import heapq def main(): import sys input = sys.stdin.read data = input().split() idx = 0 N = int(data[idx]) idx +=1 M = int(data[idx]) idx +=1 members = [[] for _ in range(N+1)] # Each entry is (c_i, s_arr) ops = [] for _ in range(M): k_i = int(data[idx]) idx +=1 c_i = int(data[idx]) idx +=1 s_arr = list(map(int, data[idx:idx + k_i])) idx += k_i ops.append((c_i, s_arr)) for s in s_arr: members[s].append((c_i, s_arr)) # Build adjacency list adj = [[] for _ in range(N+1)] for u in range(1, N+1): for (c_i, s_arr) in members[u]: s_min = s_arr[0] if u == s_min: if len(s_arr) >= 2: s_next = s_arr[1] cost = (u + s_next + 1) // 2 + c_i adj[u].append((s_next, cost)) adj[s_next].append((u, cost)) else: cost = (u + s_min + 1) // 2 + c_i adj[u].append((s_min, cost)) adj[s_min].append((u, cost)) # Dijkstra's algorithm INF = float('inf') dist = [INF] * (N + 1) dist[1] = 0 heap = [] heapq.heappush(heap, (0, 1)) while heap: current_dist, u = heapq.heappop(heap) if current_dist > dist[u]: continue for (v, cost) in adj[u]: if dist[v] > dist[u] + cost: dist[v] = dist[u] + cost heapq.heappush(heap, (dist[v], v)) print(-1 if dist[N] == INF else dist[N]) if __name__ == '__main__': main()