import math def finite_decimal_last_digit(): N = int(input()) M = int(input()) gcd_val = math.gcd(N, M) n = N // gcd_val m = M // gcd_val # Check if denominator has only 2 and 5 as factors def factorize_denominator(d): x = 0 while d % 2 == 0: x += 1 d = d // 2 y = 0 while d % 5 == 0: y += 1 d = d //5 return (x, y, d) denom_2, denom_5, remainder = factorize_denominator(m) if remainder != 1: print(-1) return # Factorize numerator n into 2^a2 * 5^a5 * m_part a2 = 0 while n % 2 == 0: a2 += 1 n = n // 2 a5 = 0 while n % 5 == 0: a5 += 1 n = n //5 m_prime_last = n % 10 k = max(denom_2, denom_5) total_2 = a2 + (k - denom_2) total_5 = a5 + (k - denom_5) delta = total_2 - total_5 if delta < 0: print(5) elif delta == 0: print(m_prime_last % 10) else: # Determine the last digit based on m_prime_last and delta key = m_prime_last % 10 if key not in {1, 3, 7, 9}: print(-1) # should never happen due to prior factorization return # Mapping for each possible key and delta modulo 4 table = { 1: [2, 4, 8, 6], 3: [6, 2, 4, 8], 7: [4, 8, 6, 2], 9: [8, 6, 2, 4] } r = (delta - 1) % 4 print(table[key][r]) finite_decimal_last_digit()