import math from math import comb def main(): x_str = input().strip() # Split the input into integral and fractional parts if '.' in x_str: integral_part, fractional_part = x_str.split('.') fractional_part = fractional_part.ljust(2, '0')[:2] else: integral_part = x_str fractional_part = '00' integral = int(integral_part) fractional = int(fractional_part[:2]) # Calculate S = 4*X as an integer # X is integral_part + fractional_part/100 # So 4*X = 4*integral_part + (4*fractional_part)/100 # To avoid floating points, we compute S as (4 * (integral * 100 + fractional)) // 100 total = integral * 100 + fractional S = (4 * total) // 100 ans = 0 # Case 1: All scores are the same (L == H) if fractional == 0 and 0 <= integral <= 100: ans += 1 # All six judges give X # Case 2: L < H for L in range(0, 100): for H in range(L + 1, 101): # Iterate over possible a and b where a >=1, b >=1, a + b <=6 for a in range(1, 6): max_b = 6 - a if max_b < 1: continue for b in range(1, max_b + 1): k = 6 - a - b sum_m = S + L + H - L * a - H * b if k == 0: # Check sum_m is 0 and equation (a-1)*L + (5-a)*H == S if sum_m == 0 and (4 * total) // 100 == (a-1)*L + (5 - a)*H: # Compute combinations: C(6, a) * C(6-a, b) c = comb(6, a) * comb(6 - a, b) ans += c else: # Check H - L >= 2, sum_m is within the valid range if H - L < 2: continue lower = k * (L + 1) upper = k * (H - 1) if sum_m < lower or sum_m > upper: continue # Calculate the number of ways for the intermediate values D = H - L - 2 Y = sum_m - k * (L + 1) if Y < 0 or Y > k * D: continue # Apply inclusion-exclusion principle max_t = Y // (D + 1) current = 0 for t in range(0, max_t + 1): sign = (-1) ** t term = comb(k, t) rem = Y - t * (D + 1) term *= comb(rem + k - 1, k - 1) current += sign * term if current <= 0: continue # Add to answer considering all arrangements c_ab = comb(6, a) * comb(6 - a, b) ans += c_ab * current print(ans) if __name__ == "__main__": main()