MOD = 998244353 n = int(input()) # Precompute factorial and inverse factorial modulo MOD fact = [1] * (n + 1) for i in range(1, n + 1): fact[i] = fact[i-1] * i % MOD inv_fact = [1] * (n + 1) inv_fact[n] = pow(fact[n], MOD - 2, MOD) for i in range(n-1, -1, -1): inv_fact[i] = inv_fact[i+1] * (i + 1) % MOD ans = 0 for m in range(0, n + 1, 2): # Calculate combination C(n, m) c = fact[n] * inv_fact[m] % MOD c = c * inv_fact[n - m] % MOD k = abs(n - 2 * m) # Calculate 2^(k + 1) mod MOD term = pow(2, k, MOD) term = term * 2 % MOD ans = (ans + c * term) % MOD print(ans)