MOD = 10**9 + 7 def main(): import sys input = sys.stdin.read().split() idx = 0 N = int(input[idx]); idx +=1 M = int(input[idx]); idx +=1 X = int(input[idx]); idx +=1 A = list(map(int, input[idx:idx+N])) idx +=N equations = [] # XOR bit equations for k in range(30): mask = 0 rhs = (X >> k) & 1 for i in range(N): if (A[i] >> k) & 1: mask |= 1 << i equations.append( (mask, rhs) ) # Constraints equations for _ in range(M): t = int(input[idx]); idx +=1 l = int(input[idx]) -1; idx +=1 r = int(input[idx]) -1; idx +=1 mask = 0 for i in range(l, r+1): mask |= 1 << i equations.append( (mask, t) ) rank = 0 n = N # Gaussian elimination in GF(2) for col in reversed(range(n)): pivot = -1 for r in range(rank, len(equations)): if (equations[r][0] >> col) & 1: pivot = r break if pivot == -1: continue equations[rank], equations[pivot] = equations[pivot], equations[rank] current_mask, current_rhs = equations[rank] for r in range(len(equations)): if r != rank and ( (equations[r][0] >> col) & 1 ): equations[r] = ( equations[r][0] ^ current_mask, equations[r][1] ^ current_rhs ) rank += 1 # Check for inconsistency for r in range(rank, len(equations)): if equations[r][0] == 0 and equations[r][1] != 0: print(0) return print(pow(2, n - rank, MOD)) if __name__ == "__main__": main()