MOD = 10**9 + 7 def main(): import sys N, M = map(int, sys.stdin.readline().split()) if M > N: print(0) return # Precompute factorial and inverse factorial modulo MOD fact = [1] * (M + 1) for i in range(1, M + 1): fact[i] = fact[i - 1] * i % MOD inv_fact = [1] * (M + 1) inv_fact[M] = pow(fact[M], MOD - 2, MOD) for i in range(M - 1, -1, -1): inv_fact[i] = inv_fact[i + 1] * (i + 1) % MOD result = 0 for k in range(0, M + 1): # Compute sign (-1)^k mod MOD sign = pow(-1, k, MOD) # Compute combination C(M, k) comb = fact[M] * inv_fact[k] % MOD comb = comb * inv_fact[M - k] % MOD # Compute (M -k)^N mod MOD base = M - k power = pow(base, N, MOD) # Compute term term = sign * comb % MOD term = term * power % MOD # Add to result result = (result + term) % MOD print(result) if __name__ == '__main__': main()