MOD = 10**9 + 7

a, b = map(int, input().split())
n, k = map(int, input().split())

max_needed = 2 * n - 2  # since for sum of squares, maximum comb is 2n-2 choose n-1
max_fact = max(max_needed, n-1)  # for (n-1 choose k-1) and others

fact = [1] * (max_fact + 1)
for i in range(1, max_fact + 1):
    fact[i] = fact[i-1] * i % MOD

inv_fact = [1] * (max_fact + 1)
inv_fact[max_fact] = pow(fact[max_fact], MOD-2, MOD)
for i in range(max_fact - 1, -1, -1):
    inv_fact[i] = inv_fact[i+1] * (i+1) % MOD

def comb(n, k):
    if k < 0 or k > n:
        return 0
    return fact[n] * inv_fact[k] % MOD * inv_fact[n - k] % MOD

a_mod = a % MOD
b_mod = b % MOD

c1 = comb(n-1, k-1)
c2 = comb(n-1, k-2)
val = (a_mod * c1 + b_mod * c2) % MOD

term1 = (a_mod * a_mod % MOD) * comb(2*n - 2, n-1) % MOD
term2 = (2 * a_mod * b_mod % MOD) * comb(2*n - 2, n-2) % MOD
term3 = (b_mod * b_mod % MOD) * comb(2*n - 2, n-1) % MOD
sum_sq = (term1 + term2 + term3) % MOD

print(val)
print(sum_sq)