#include using namespace std; static const int N = 50; static const int MOD = 100000000; typedef long long ll; using EvalResult = tuple; struct SAParams { double T0 = 1e4; double Tend = 1e-4; double alpha = 0.99995; double timeLimit = 1.9; int deltaRange = 1000000; }; struct PyramidSolver { int a[N][N], b[N][N]; int cur[N], best[N]; EvalResult bestEval; double bestMetric; SAParams params; mt19937_64 rng; uniform_int_distribution uni_pos; uniform_int_distribution uni_delta; uniform_real_distribution uni_real; PyramidSolver() : rng(chrono::high_resolution_clock::now().time_since_epoch().count()), uni_pos(0, N - 1), uni_delta(-params.deltaRange, params.deltaRange), uni_real(0.0, 1.0) {} void readInput() { for (int i = 0; i < N; i++) for (int j = 0; j <= i; j++) cin >> a[i][j]; } void build() { for (int j = 0; j < N; j++) b[N - 1][j] = (cur[j] % MOD + MOD) % MOD; for (int i = N - 2; i >= 0; i--) for (int j = 0; j <= i; j++) b[i][j] = (b[i + 1][j] + b[i + 1][j + 1]) % MOD; } EvalResult evaluate() { EvalResult r = {0, 0, 0, 0, 0}; for (int i = 0; i < N; i++) for (int j = 0; j <= i; j++) { int diff = min(abs(a[i][j] - b[i][j]), MOD - abs(a[i][j] - b[i][j])); get<1>(r) += diff; get<2>(r) += 1.0 * diff * diff; get<3>(r) += 1.0 * diff * diff * diff; get<4>(r) += 1.0 * diff * diff * diff * diff; get<0>(r) = max(get<0>(r), diff); } return r; } double metric(const EvalResult &r, double elapsed) const { double frac = min(elapsed / params.timeLimit, 1.0); if (frac < 0.25) return get<1>(r); if (frac < 0.50) return get<2>(r); if (frac < 0.75) return get<3>(r); return get<4>(r); } void anneal() { auto start = chrono::high_resolution_clock::now(); for (int i = 0; i < N; i++) cur[i] = uniform_int_distribution(0, MOD - 1)(rng); build(); EvalResult curEval = evaluate(); double curMetric = metric(curEval, 0); bestEval = curEval; bestMetric = curMetric; memcpy(best, cur, sizeof(cur)); double T = params.T0; while (true) { auto now = chrono::high_resolution_clock::now(); double elapsed = chrono::duration(now - start).count(); if (elapsed >= params.timeLimit || T <= params.Tend) break; int pos = uni_pos(rng); int old = cur[pos]; cur[pos] = (old + uni_delta(rng) + MOD) % MOD; build(); EvalResult newEval = evaluate(); double newMetric = metric(newEval, elapsed); double diff = newMetric - curMetric; if (diff < 0 || exp(-diff / T) > uni_real(rng)) { curEval = newEval; curMetric = newMetric; int newMax = get<0>(newEval), bestMax = get<0>(bestEval); if (newMax < bestMax) { bestEval = newEval; memcpy(best, cur, sizeof(cur)); bestMetric = newMetric; } } else cur[pos] = old; T *= params.alpha; } } void output() const { for (int i = 0; i < N; i++) cout << best[i] << (i + 1 < N ? ' ' : '\n'); cerr << "Max Error: " << get<0>(bestEval) << "\n"; cerr << "Score: " << (50000000 - get<0>(bestEval)) << "\n"; } void solve() { readInput(); anneal(); output(); } }; int main() { ios::sync_with_stdio(false); cin.tie(nullptr); PyramidSolver().solve(); return 0; }