# Dinic's algorithm from collections import deque class Dinic: def __init__(self, N): self.N = N self.G = [[] for i in range(N)] def add_edge(self, fr, to, cap): forward = [to, cap, None] forward[2] = backward = [fr, 0, forward] self.G[fr].append(forward) self.G[to].append(backward) def add_multi_edge(self, v1, v2, cap1, cap2): edge1 = [v2, cap1, None] edge1[2] = edge2 = [v1, cap2, edge1] self.G[v1].append(edge1) self.G[v2].append(edge2) def bfs(self, s, t): self.level = level = [None] * self.N deq = deque([s]) level[s] = 0 G = self.G while deq: v = deq.popleft() lv = level[v] + 1 for w, cap, _ in G[v]: if cap and level[w] is None: level[w] = lv deq.append(w) return level[t] is not None def dfs(self, v, t, f): if v == t: return f level = self.level for e in self.it[v]: w, cap, rev = e if cap and level[v] < level[w]: d = self.dfs(w, t, min(f, cap)) if d: e[1] -= d rev[1] += d return d return 0 def flow(self, s, t): flow = 0 INF = 10 ** 9 + 7 G = self.G while self.bfs(s, t): *self.it, = map(iter, self.G) f = INF while f: f = self.dfs(s, t, INF) flow += f return flow dic = {"w": 0, "b": 1} N, M = map(int, input().split()) S = [input() for _ in range(N)] NM = N * M E = [] # w:NM, b:NM+1 dinic = Dinic(NM + 2) WB = [0, 0] edges = [] for i in range(N): for j in range(M): s = S[i][j] if s == ".": continue c = dic[s] ij = i * M + j WB[c] += 1 if c == 0: dinic.add_edge(NM, ij, 1) else: dinic.add_edge(ij, NM + 1, 1) if i < N - 1 and S[i + 1][j] != ".": ij2 = (i + 1) * M + j if c == 0: dinic.add_edge(ij, ij2, 1) else: dinic.add_edge(ij2, ij, 1) if j < M - 1 and S[i][j + 1] != ".": ij2 = i * M + j + 1 if c == 0: dinic.add_edge(ij, ij2, 1) else: dinic.add_edge(ij2, ij, 1) m = dinic.flow(NM, NM + 1) ans = abs(WB[0] - WB[1]) ans += 100 * m ans += 10 * (min(WB) - m) print(ans)