#include using namespace std; #include using namespace atcoder; #define isin(l, x, r) (l <= x && x < r) #define rep(i, n) for (int i = 0; (i) < (int)(n); ++(i)) #define rep3(i, m, n) for (int i = (m); (i) < (int)(n); ++(i)) #define rep_r(i, n) for (int i = (int)(n) - 1; (i) >= 0; --(i)) #define rep3r(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); --(i)) #define all(x) begin(x), end(x) #define UNIQUE(v) v.erase(unique(v.begin(), v.end()), v.end()) using ll = long long; using PI = std::pair; using PLL = std::pair; using VI = std::vector; using VLL = std::vector; template using PQ = std::priority_queue, std::greater>; template bool chmax(T &a, const T &b) { if (a < b) { a = b; // aをbで更新 return true; } return false; } template bool chmin(T &a, const T &b) { if (a > b) { a = b; // aをbで更新 return true; } return false; } /* #define rad_to_deg(rad) (((rad)/2/M_PI)*360) cout << std::fixed << std::setprecision(15) << y << endl; int dx[4]={1,0,-1,0}; int dy[4]={0,1,0,-1}; */ /* #include using namespace atcoder; using mint = modint998244353; */ #ifdef LOCAL // #include #else #define dlog(...) #endif typedef long long ll; typedef pair pii; #define rep2(i, m, n) for (int i = (m); i < (n); ++i) #define rep(i, n) rep2(i, 0, n) #define drep2(i, m, n) for (int i = (m) - 1; i >= (n); --i) #define drep(i, n) drep2(i, n, 0) template struct FormalPowerSeries : vector { using vector::vector; using vector::operator=; using F = FormalPowerSeries; F operator-() const { F res(*this); for (auto &e : res) e = -e; return res; } F &operator*=(const T &g) { for (auto &e : *this) e *= g; return *this; } F &operator/=(const T &g) { assert(g != T(0)); *this *= g.inv(); return *this; } F &operator+=(const F &g) { int n = (*this).size(), m = g.size(); rep(i, min(n, m))(*this)[i] += g[i]; return *this; } F &operator-=(const F &g) { int n = (*this).size(), m = g.size(); rep(i, min(n, m))(*this)[i] -= g[i]; return *this; } F &operator<<=(const int d) { int n = (*this).size(); (*this).insert((*this).begin(), d, 0); (*this).resize(n); return *this; } F &operator>>=(const int d) { int n = (*this).size(); (*this).erase((*this).begin(), (*this).begin() + min(n, d)); (*this).resize(n); return *this; } F inv(int d = -1) const { int n = (*this).size(); assert(n != 0 && (*this)[0] != 0); if (d == -1) d = n; assert(d > 0); F res{(*this)[0].inv()}; while (res.size() < d) { int m = size(res); F f(begin(*this), begin(*this) + min(n, 2 * m)); F r(res); f.resize(2 * m), internal::butterfly(f); r.resize(2 * m), internal::butterfly(r); rep(i, 2 * m) f[i] *= r[i]; internal::butterfly_inv(f); f.erase(f.begin(), f.begin() + m); f.resize(2 * m), internal::butterfly(f); rep(i, 2 * m) f[i] *= r[i]; internal::butterfly_inv(f); T iz = T(2 * m).inv(); iz *= -iz; rep(i, m) f[i] *= iz; res.insert(res.end(), f.begin(), f.begin() + m); } return {res.begin(), res.begin() + d}; } // // naive F &operator*=(const F &g) { int n = (*this).size(), m = g.size(); drep(i, n) { (*this)[i] *= g[0]; rep2(j, 1, min(i + 1, m))(*this)[i] += (*this)[i - j] * g[j]; } return *this; } F &operator/=(const F &g) { assert(g[0] != T(0)); T ig0 = g[0].inv(); int n = (*this).size(), m = g.size(); rep(i, n) { rep2(j, 1, min(i + 1, m))(*this)[i] -= (*this)[i - j] * g[j]; (*this)[i] *= ig0; } return *this; } // sparse F &operator*=(vector> g) { int n = (*this).size(); auto [d, c] = g.front(); if (d == 0) g.erase(g.begin()); else c = 0; drep(i, n) { (*this)[i] *= c; for (auto &[j, b] : g) { if (j > i) break; (*this)[i] += (*this)[i - j] * b; } } return *this; } F &operator/=(vector> g) { int n = (*this).size(); auto [d, c] = g.front(); assert(d == 0 && c != T(0)); T ic = c.inv(); g.erase(g.begin()); rep(i, n) { for (auto &[j, b] : g) { if (j > i) break; (*this)[i] -= (*this)[i - j] * b; } (*this)[i] *= ic; } return *this; } // multiply and divide (1 + cz^d) void multiply(const int d, const T c) { int n = (*this).size(); if (c == T(1)) drep(i, n - d)(*this)[i + d] += (*this)[i]; else if (c == T(-1)) drep(i, n - d)(*this)[i + d] -= (*this)[i]; else drep(i, n - d)(*this)[i + d] += (*this)[i] * c; } void divide(const int d, const T c) { int n = (*this).size(); if (c == T(1)) rep(i, n - d)(*this)[i + d] -= (*this)[i]; else if (c == T(-1)) rep(i, n - d)(*this)[i + d] += (*this)[i]; else rep(i, n - d)(*this)[i + d] -= (*this)[i] * c; } T eval(const T &a) const { T x(1), res(0); for (auto e : *this) res += e * x, x *= a; return res; } F operator*(const T &g) const { return F(*this) *= g; } F operator/(const T &g) const { return F(*this) /= g; } F operator+(const F &g) const { return F(*this) += g; } F operator-(const F &g) const { return F(*this) -= g; } F operator<<(const int d) const { return F(*this) <<= d; } F operator>>(const int d) const { return F(*this) >>= d; } F operator*(const F &g) const { return F(*this) *= g; } F operator/(const F &g) const { return F(*this) /= g; } F operator*(vector> g) const { return F(*this) *= g; } F operator/(vector> g) const { return F(*this) /= g; } }; ll solve(int N, ll K, const std::vector &A) { auto mx = *max_element(all(A)); FormalPowerSeries ans(2 * mx + 10, 0); rep(i, N) ans[A[i]]++; ans *= ans; return ans[K]; } // generated by oj-template v4.8.1 (https://github.com/online-judge-tools/template-generator) int main() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); cout << std::fixed << std::setprecision(15); int n; ll k; std::cin >> n; std::vector a(n); std::cin >> k; rep(i, n) { std::cin >> a[i]; } auto ans = solve(n, k, a); std::cout << ans << '\n'; return 0; }