import math def main(): import sys input = sys.stdin.read data = input().split() idx = 0 N = int(data[idx]) idx += 1 p = list(map(float, data[idx:idx+N])) idx += N q = list(map(float, data[idx:idx+N])) idx += N A = list(map(int, data[idx:idx+N])) idx += N def compute_F_Fprime(s): F = 0.0 Fprime = 0.0 for j in range(N): pj = p[j] qj = q[j] denom = 1.0 - qj * s term_F = pj * (1.0 - qj) / denom F += term_F term_Fprime = pj * (1.0 - qj) * qj / (denom ** 2) Fprime += term_Fprime return F, Fprime # Initial guess: compute F(0) s = sum(pj * (1.0 - qj) for pj, qj in zip(p, q)) if s == 0.0: s = 0.5 # avoid division by zero in Newton step if initial sum is 0 for _ in range(100): F, Fprime = compute_F_Fprime(s) if F == s: break denominator = Fprime - 1.0 if denominator == 0: break delta = (F - s) / denominator s_new = s - delta if abs(delta) < 1e-12: s = s_new break s = s_new sum_log = 0.0 for i in range(N): a = A[i] if a == 0: continue qi = q[i] denom = 1.0 - qi * s if denom <= 0: xi = 0.0 else: xi = (1.0 - qi) / denom sum_log += a * math.log(xi) # Handle the case when all A are zero print("{0:.10f}".format(sum_log)) if __name__ == '__main__': main()