import sys from collections import deque def main(): input = sys.stdin.read().split() ptr = 0 N = int(input[ptr]) ptr += 1 M = int(input[ptr]) ptr += 1 s = int(input[ptr]) - 1 # 0-based ptr += 1 t = int(input[ptr]) - 1 ptr += 1 k = int(input[ptr]) ptr += 1 edges = [[] for _ in range(N)] for _ in range(M): a = int(input[ptr]) - 1 ptr += 1 b = int(input[ptr]) - 1 ptr += 1 edges[a].append(b) edges[b].append(a) # Bipartition coloring color = [-1] * N is_bipartite = True for start in range(N): if color[start] == -1: q = deque() q.append(start) color[start] = 0 while q: u = q.popleft() for v in edges[u]: if color[v] == -1: color[v] = color[u] ^ 1 q.append(v) elif color[v] == color[u]: is_bipartite = False # Since F is guaranteed to be bipartite, we don't need to handle non-bipartite case s_color = color[s] t_color = color[t] # Check parity if (s_color == t_color and k % 2 != 0) or (s_color != t_color and k % 2 != 1): print("No") return # Check connectivity and compute shortest distance d from s to t visited = [False] * N dist = [-1] * N q = deque() q.append(s) dist[s] = 0 visited[s] = True found = False while q: u = q.popleft() if u == t: found = True break for v in edges[u]: if not visited[v]: visited[v] = True dist[v] = dist[u] + 1 q.append(v) if not found: print("Unknown") return d = dist[t] if d > k or (k - d) % 2 != 0: print("Unknown") else: print("Yes") if __name__ == "__main__": main()