import math def sieve(n): sieve = [True] * (n + 1) sieve[0] = sieve[1] = False for i in range(2, int(math.isqrt(n)) + 1): if sieve[i]: sieve[i*i : n+1 : i] = [False] * len(sieve[i*i : n+1 : i]) return [i for i, is_p in enumerate(sieve) if is_p] def is_prime(n): if n < 2: return False for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]: if n % p == 0: return n == p d = n - 1 s = 0 while d % 2 == 0: d //= 2 s += 1 for a in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]: if a >= n: continue x = pow(a, d, n) if x == 1 or x == n - 1: continue for _ in range(s - 1): x = pow(x, 2, n) if x == n - 1: break else: return False return True L, H = map(int, input().split()) sqrt_H = math.isqrt(H) primes = sieve(sqrt_H) primes.sort(reverse=True) p_max = -1 x_max = -1 for p in primes: # Case a: p squared x_a = p * p valid_a = L <= x_a <= H # Case b: p * k where k is >= p and not divisible by any prime < p k_max = H // p valid_b = False x_b = -1 if k_max >= p: primes_less_than_p = [q for q in primes if q < p] found_k = None for k in range(k_max, p - 1, -1): divisible = False for q in primes_less_than_p: if k % q == 0: divisible = True break if not divisible: found_k = k break if found_k is not None: x_b_candidate = p * found_k if x_b_candidate >= L: x_b = x_b_candidate valid_b = True # Determine current candidate x candidates = [] if valid_a: candidates.append(x_a) if valid_b: candidates.append(x_b) if not candidates: continue current_x = max(candidates) # Update p_max and x_max if p > p_max: p_max = p x_max = current_x elif p == p_max: if current_x > x_max: x_max = current_x print(x_max)