import sys import math def main(): N, M, L = map(int, sys.stdin.readline().split()) A = list(map(int, sys.stdin.readline().split())) count = [0] * L for r in range(L): # Solve for t'*N ≡ r mod L g = math.gcd(N, L) if r % g != 0: count[r] = 0 continue new_N = N // g new_L = L // g new_r = r // g # Find modular inverse of new_N modulo new_L try: inv_N = pow(new_N, -1, new_L) except ValueError: # Shouldn't happen as new_N and new_L are coprime count[r] = 0 continue t0 = (new_r * inv_N) % new_L if t0 >= M: count[r] = 0 else: # Number of solutions: floor((M-1 - t0) / new_L) + 1 m_max = (M - 1 - t0) // new_L count[r] = m_max + 1 max_C = -float('inf') for i in range(1, L+1): current_sum = 0 for k in range(N): # j is k+1 in 1-based r = (i - (k+1)) % L current_sum += A[k] * count[r] if current_sum > max_C: max_C = current_sum print(max_C) if __name__ == "__main__": main()