n, m = map(int, input().split()) S = input().strip() T = input().strip() INF = float('inf') # Initialize DP tables M = [[INF] * (m + 1) for _ in range(n + 1)] I = [[INF] * (m + 1) for _ in range(n + 1)] D = [[INF] * (m + 1) for _ in range(n + 1)] M[0][0] = 0 # Base case: no characters processed for i in range(n + 1): for j in range(m + 1): if i == 0 and j == 0: continue # Update M[i][j] (match or substitution) if i > 0 and j > 0: cost = 0 if S[i-1] == T[j-1] else 5 prev_min = min(M[i-1][j-1], I[i-1][j-1], D[i-1][j-1]) if prev_min + cost < M[i][j]: M[i][j] = prev_min + cost # Update I[i][j] (insertion) if j > 0: candidates = [] if I[i][j-1] != INF: candidates.append(I[i][j-1] + 2) if M[i][j-1] != INF: candidates.append(M[i][j-1] + 9) if D[i][j-1] != INF: candidates.append(D[i][j-1] + 9) if candidates: min_val = min(candidates) if min_val < I[i][j]: I[i][j] = min_val # Update D[i][j] (deletion) if i > 0: candidates = [] if D[i-1][j] != INF: candidates.append(D[i-1][j] + 2) if M[i-1][j] != INF: candidates.append(M[i-1][j] + 9) if I[i-1][j] != INF: candidates.append(I[i-1][j] + 9) if candidates: min_val = min(candidates) if min_val < D[i][j]: D[i][j] = min_val # Determine the minimal cost min_cost = min(M[n][m], I[n][m], D[n][m]) # Backtrack to find the alignment s_aligned = [] t_aligned = [] current_state = None if min_cost == M[n][m]: current_state = 'M' elif min_cost == I[n][m]: current_state = 'I' else: current_state = 'D' i, j = n, m while i > 0 or j > 0: if current_state == 'M': s_aligned.append(S[i-1]) t_aligned.append(T[j-1]) cost = 0 if S[i-1] == T[j-1] else 5 prev_val = M[i][j] - cost if i > 0 and j > 0 and M[i-1][j-1] == prev_val: i -= 1 j -= 1 current_state = 'M' elif i > 0 and j > 0 and I[i-1][j-1] == prev_val: i -= 1 j -= 1 current_state = 'I' elif i > 0 and j > 0 and D[i-1][j-1] == prev_val: i -= 1 j -= 1 current_state = 'D' elif current_state == 'I': s_aligned.append('-') t_aligned.append(T[j-1]) current_val = I[i][j] if j > 0 and I[i][j-1] != INF and I[i][j-1] + 2 == current_val: j -= 1 current_state = 'I' elif j > 0 and M[i][j-1] != INF and M[i][j-1] + 9 == current_val: j -= 1 current_state = 'M' elif j > 0 and D[i][j-1] != INF and D[i][j-1] + 9 == current_val: j -= 1 current_state = 'D' elif current_state == 'D': s_aligned.append(S[i-1]) t_aligned.append('-') current_val = D[i][j] if i > 0 and D[i-1][j] != INF and D[i-1][j] + 2 == current_val: i -= 1 current_state = 'D' elif i > 0 and M[i-1][j] != INF and M[i-1][j] + 9 == current_val: i -= 1 current_state = 'M' elif i > 0 and I[i-1][j] != INF and I[i-1][j] + 9 == current_val: i -= 1 current_state = 'I' s_aligned = s_aligned[::-1] t_aligned = t_aligned[::-1] print(min_cost) print(''.join(s_aligned)) print(''.join(t_aligned))