def is_prime(n): if n < 2: return False for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]: if n % p == 0: return n == p d = n - 1 s = 0 while d % 2 == 0: d //= 2 s += 1 for a in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]: if a >= n: continue x = pow(a, d, n) if x == 1 or x == n - 1: continue for _ in range(s - 1): x = pow(x, 2, n) if x == n - 1: break else: return False return True def check_last_row(n, w): h = n // w r = n % w if r == 0: start = (h - 1) * w + 1 end = h * w else: start = h * w + 1 end = n for num in range(start, end + 1): if is_prime(num): return False return True def check_left_column(n, w): h_total = n // w r = n % w if r != 0: h_total += 1 current = 1 for _ in range(h_total): if is_prime(current): return False current += w if current > n: break return True def find_min_w(n): # Check possible W starting from the smallest possible # First, check if W=2 is possible for w in range(2, n): if check_last_row(n, w): # Check if the left column is all composite if check_left_column(n, w): return w # If no smaller W found, return N-1 as a fallback (which is guaranteed to work) return n - 1 n = int(input()) print(find_min_w(n))