MOD = 998244353 def main(): import sys N, B, C = map(int, sys.stdin.readline().split()) # Precompute factorial and inverse factorial modulo MOD max_n = N fact = [1] * (max_n + 1) for i in range(1, max_n + 1): fact[i] = fact[i-1] * i % MOD inv_fact = [1] * (max_n + 1) inv_fact[max_n] = pow(fact[max_n], MOD - 2, MOD) for i in range(max_n - 1, -1, -1): inv_fact[i] = inv_fact[i+1] * (i+1) % MOD def comb(n, k): if k < 0 or k > n: return 0 return fact[n] * inv_fact[k] % MOD * inv_fact[n - k] % MOD cur_dp = {0: 1} for k in range(60): b_k = (B >> k) & 1 c_k = (C >> k) & 1 next_dp = {} for c_in, count in cur_dp.items(): # Check if the condition c_k ≡ (b_k - c_in) mod 2 holds if (c_k % 2) != ((b_k - c_in) % 2 + 2) % 2: continue numerator_min = c_in - b_k c_out_min = (numerator_min + 1) // 2 c_out_min = max(c_out_min, 0) numerator_max = N + c_in - b_k c_out_max = numerator_max // 2 if c_out_min > c_out_max: continue for c_out in range(c_out_min, c_out_max + 1): s = b_k + 2 * c_out - c_in if s < 0 or s > N: continue # This should not happen due to earlier checks c = comb(N, s) if c == 0: continue next_dp[c_out] = (next_dp.get(c_out, 0) + count * c) % MOD cur_dp = next_dp if not cur_dp: break # No possible way, exit early print(cur_dp.get(0, 0) % MOD) if __name__ == '__main__': main()