MOD = 10**9 + 7 max_n = 2 * 10**6 + 5 # Precompute up to 2 million + 5 to handle large cases # Precompute factorial and inverse factorial modulo MOD fact = [1] * (max_n + 1) for i in range(1, max_n + 1): fact[i] = fact[i-1] * i % MOD inv_fact = [1] * (max_n + 1) inv_fact[max_n] = pow(fact[max_n], MOD - 2, MOD) for i in range(max_n - 1, -1, -1): inv_fact[i] = inv_fact[i + 1] * (i + 1) % MOD def solve(): M = int(input()) H = list(map(int, input().split())) k = len(H) if k == 0: print("NA") return if k == 1: if H[0] == 0: print(1) return # Check if any element is zero in case of k > 1 valid = True if k > 1: for h in H: if h <= 0: valid = False break if not valid: print("NA") return sum_h = sum(H) required = sum_h + (k - 1) if required > M: print("NA") return rem = M - required n = rem + k if k > n: print(0) return if n > max_n: print("NA") return res = fact[n] * inv_fact[k] % MOD res = res * inv_fact[n - k] % MOD print(res) solve()