MOD = 998244353 def main(): import sys input = sys.stdin.read().split() N = int(input[0]) P = list(map(int, input[1:N+1])) # Precompute pow2 max_pow = N pow2 = [1] * (max_pow + 1) for i in range(1, max_pow + 1): pow2[i] = (pow2[i-1] * 2) % MOD # Compute K (number of inversion pairs in original permutation) class FenwickTree: def __init__(self, size): self.size = size self.tree = [0] * (self.size + 2) def update(self, idx, val=1): while idx <= self.size: self.tree[idx] += val idx += idx & -idx def query(self, idx): res = 0 while idx > 0: res += self.tree[idx] idx -= idx & -idx return res ft = FenwickTree(N) K = 0 for i in reversed(range(N)): K += ft.query(P[i] - 1) ft.update(P[i]) K %= MOD # Compute sum over d of cnt[d] * pow2[N-1 -d] sum_terms = 0 for d in range(1, N): cnt = 0 for i in range(N - d): if P[i] > P[i + d]: cnt += 1 term = cnt * pow2[N-1 - d] sum_terms = (sum_terms + term) % MOD ans = (K * pow2[N-1] - sum_terms) % MOD print(ans if ans >= 0 else ans + MOD) if __name__ == "__main__": main()