#include using namespace std; #include using mint = atcoder::modint1000000007; using ll = long long; using vl = vector; ll floor_sqrt(ll n) { ll l = 0, r = 1e9; while (r - l > 1) { ll x = (l + r) / 2; (x * x <= n ? l : r) = x; } return l; } pair prime_count(ll n) { ll sq = floor_sqrt(n); vl large(sq + 1, 0), small(n / sq, 0); for (ll i = 1; i < large.size(); i++) large[i] = n / i - 1; for (ll i = 1; i < small.size(); i++) small[i] = i - 1; for (ll p = 2; p <= sq; p++) { if ((p < small.size() ? small[p] : large[n / p]) <= small[p - 1]) continue; ll q = small[p - 1], pp = p * p; for (ll i = 1; i <= sq && n / i >= pp; i++) { ll ip = i * p; large[i] -= (ip <= sq ? large[ip] : small[n / ip]) - q; } for (ll i = n / sq - 1; i >= pp; i--) small[i] -= small[i / p] - q; } vl x, c; for (ll i = 1; i < small.size(); i++) { x.push_back(i); c.push_back(small[i]); } for (ll i = sq; i; i--) { x.push_back(n / i); c.push_back(large[i]); } return {x, c}; } int main() { ll n; cin >> n; auto [x, c] = prime_count(n); mint ans = 1; for (int i = 1; i < x.size(); i++) { mint s = 1; for (ll v = n; v;) s += v /= x[i]; ans *= s.pow(c[i] - c[i - 1]); } cout << ans.val() << "\n"; }