MOD = 10**9 + 7 n = int(input()) # Precompute probabilities for n = 0 to 5 p = [0] * 6 p[0] = 1 inv6 = pow(6, MOD - 2, MOD) for i in range(1, 6): total = 0 for k in range(1, i + 1): if i - k >= 0: total += p[i - k] total %= MOD p[i] = total * inv6 % MOD if n < 6: print(p[n]) else: # Define the transition matrix M M = [[inv6 for _ in range(6)]] for i in range(1, 6): row = [0] * 6 row[i - 1] = 1 M.append(row) # Matrix multiplication def mat_mult(a, b): res = [[0] * 6 for _ in range(6)] for i in range(6): for k in range(6): if a[i][k] == 0: continue for j in range(6): res[i][j] = (res[i][j] + a[i][k] * b[k][j]) % MOD return res # Matrix exponentiation def mat_pow(mat, power): result = [[1 if i == j else 0 for j in range(6)] for i in range(6)] while power > 0: if power % 2 == 1: result = mat_mult(result, mat) mat = mat_mult(mat, mat) power //= 2 return result # Calculate M^(n-5) M_power = mat_pow(M, n - 5) # Initial vector [p5, p4, p3, p2, p1, p0] vec = [p[5], p[4], p[3], p[2], p[1], p[0]] # Multiply the matrix with the vector res = 0 for i in range(6): res = (res + M_power[0][i] * vec[i]) % MOD print(res)