def main(): import sys input = sys.stdin.read().split() idx = 0 N = int(input[idx]) idx += 1 A = list(map(int, input[idx:idx + N])) idx += N # Coordinate compression unique = sorted(set(A)) compress = {x: i + 1 for i, x in enumerate(unique)} # 1-based index M = len(unique) + 2 compressed_A = [compress[x] for x in A] # Precompute right_less and right_greater using Fenwick Tree right_less = [0] * N right_greater = [0] * N ft = FenwickTree(M) for j in range(N - 1, -1, -1): v = compressed_A[j] right_less[j] = ft.query(v - 1) right_greater[j] = ft.size() - ft.query(v) ft.add(v, 1) # Precompute left_less and left_greater using Fenwick Tree left_less = [0] * N left_greater = [0] * N ft_lt = FenwickTree(M) for j in range(N): v = compressed_A[j] left_less[j] = ft_lt.query(v - 1) cnt = j # number of elements added so far (j elements when processing 0-based) left_greater[j] = cnt - ft_lt.query(v) ft_lt.add(v, 1) # Initialize right_count and left_count from collections import defaultdict right_count = defaultdict(int) for x in compressed_A: right_count[x] += 1 left_count = defaultdict(int) # Fenwick Tree for same_less and same_greater class Fenwick: def __init__(self, size): self.n = size self.tree = [0] * (self.n + 2) def update(self, idx, delta): while idx <= self.n: self.tree[idx] += delta idx += idx & -idx def query(self, idx): res = 0 while idx > 0: res += self.tree[idx] idx -= idx & -idx return res def query_range(self, a, b): if a > b: return 0 return self.query(b) - self.query(a - 1) fen_less_greater = Fenwick(M) # Initialize Fenwick Tree with left[x] * right[x] for all x (initial left[x] is 0) # Initially, all products are 0 ans = 0 for j in range(N): v = compressed_A[j] # Decrement right_count[v] RC_old = right_count[v] right_count[v] -= 1 # Calculate same_less and same_greater same_less = fen_less_greater.query(v - 1) same_greater = fen_less_greater.query_range(v + 1, M) # Case 1: A_j is max, so left_less * right_less - same_less case1 = left_less[j] * right_less[j] - same_less if case1 > 0: ans += case1 # Case 2: A_j is min, left_greater * right_greater - same_greater case2 = left_greater[j] * right_greater[j] - same_greater if case2 > 0: ans += case2 # Update left_count[v] and Fenwick tree LC_old = left_count[v] left_count[v] += 1 # Calculate delta = (LC_old +1) * (RC_old -1) - (LC_old * RC_old) delta = ( (LC_old +1) * (RC_old -1) ) - (LC_old * RC_old) fen_less_greater.update(v, delta) print(ans) class FenwickTree: def __init__(self, size): self.n = size self.tree = [0] * (self.n + 2) self.cnt = 0 # Number of elements in the tree def add(self, idx, delta): self.cnt += delta while idx <= self.n: self.tree[idx] += delta idx += idx & -idx def query(self, idx): res = 0 while idx > 0: res += self.tree[idx] idx -= idx & -idx return res def size(self): return self.cnt if __name__ == '__main__': main()