def main(): import sys from collections import defaultdict N, k = map(int, sys.stdin.readline().split()) A = list(map(int, sys.stdin.readline().split())) B = list(map(int, sys.stdin.readline().split())) if k == 1: if A == B: print("Yes") else: print("No") return if k > N: if A == B: print("Yes") else: print("No") return # Check if A and B have the same multiset sorted_A = sorted(A) sorted_B = sorted(B) if sorted_A != sorted_B: print("No") return # Function to check if exists m >=k and <=N with m mod4 2 or 3 def has_valid_m(k, N): rem = k % 4 if rem in (2, 3): return True if rem == 0: m2 = k + 2 m3 = k + 3 return m2 <= N or m3 <= N elif rem == 1: m1 = k + 1 m2 = k + 2 return m1 <= N or m2 <= N if has_valid_m(k, N): print("Yes") return # Check for duplicates freq = defaultdict(int) for num in A: freq[num] += 1 has_duplicates = any(v > 1 for v in freq.values()) if has_duplicates: print("Yes") return # Build permutation pos_in_A = {num: i for i, num in enumerate(A)} perm = [] for num in B: perm.append(pos_in_A[num]) # Compute inversion parity using Fenwick Tree class FenwickTree: def __init__(self, size): self.size = size self.tree = [0]*(size+1) def update(self, idx, delta=1): idx +=1 # 1-based while idx <= self.size: self.tree[idx] += delta idx += idx & -idx def query(self, idx): idx +=1 # 1-based res = 0 while idx >0: res += self.tree[idx] idx -= idx & -idx return res ft = FenwickTree(N) parity = 0 for x in reversed(perm): # Number of elements smaller than x already processed (in right) count = ft.query(x-1) parity = (parity + count) %2 ft.update(x) if parity %2 ==0: print("Yes") else: print("No") if __name__ == "__main__": main()