import math import sys def sieve(n): """Generate list of primes up to n using the Sieve of Eratosthenes.""" sieve = [True] * (n + 1) sieve[0] = sieve[1] = False for i in range(2, int(math.isqrt(n)) + 1): if sieve[i]: sieve[i*i : n+1 : i] = [False] * len(sieve[i*i : n+1 : i]) primes = [i for i, is_p in enumerate(sieve) if is_p] return primes def is_prime(n): """Check if n is a prime using the Miller-Rabin test with deterministic bases for n < 2^64.""" if n <= 1: return False elif n <= 3: return True elif n % 2 == 0: return False d = n - 1 s = 0 while d % 2 == 0: d //= 2 s += 1 bases = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37] for a in bases: if a >= n: continue x = pow(a, d, n) if x == 1 or x == n - 1: continue for _ in range(s - 1): x = pow(x, 2, n) if x == n - 1: break else: return False return True def main(): L, R = map(int, sys.stdin.readline().split()) size = R - L + 1 is_square_free = [True] * size # Initialize all as square-free # Step 1: Mark multiples of squares of small primes (<= 1e6) max_prime = math.isqrt(R) sieve_limit = min(max_prime, 10**6) primes = sieve(sieve_limit) for p in primes: p_squared = p * p if p_squared > R: continue # Find the first occurrence of p^2 multiple >= L first = L + (p_squared - L % p_squared) % p_squared if first > R: continue # Mark all multiples in the range [first, R] for x in range(first, R + 1, p_squared): is_square_free[x - L] = False # Step 2: Check for numbers that are squares of primes larger than sieve_limit for x in range(L, R + 1): idx = x - L if not is_square_free[idx]: continue s = math.isqrt(x) if s * s == x and is_prime(s): is_square_free[idx] = False # Count the remaining square-free numbers print(sum(is_square_free)) if __name__ == "__main__": main()