n = int(input()) y = list(map(int, input().split())) max_y_val = max(y) + n # Maximum possible value after considering increments over N steps # Initialize previous DP and cumulative minimum prev_dp = [float('inf')] * (max_y_val + 1) for current_y in range(max_y_val + 1): prev_dp[current_y] = abs(y[0] - current_y) # Compute cumulative minimum for the first step min_dp_prev = [float('inf')] * (max_y_val + 1) current_min = float('inf') for current_y in range(max_y_val + 1): if prev_dp[current_y] < current_min: current_min = prev_dp[current_y] min_dp_prev[current_y] = current_min # Process each subsequent point for i in range(1, n): curr_dp = [float('inf')] * (max_y_val + 1) for current_y in range(max_y_val + 1): if current_y > max_y_val: continue current_cost = min_dp_prev[current_y] + abs(y[i] - current_y) curr_dp[current_y] = current_cost # Update cumulative minimum for the current step min_dp_curr = [float('inf')] * (max_y_val + 1) current_min = float('inf') for current_y in range(max_y_val + 1): if curr_dp[current_y] < current_min: current_min = curr_dp[current_y] min_dp_curr[current_y] = current_min # Update previous values for next iteration prev_dp, min_dp_prev = curr_dp, min_dp_curr # The minimum value from the last step's cumulative minimum array is the answer print(min(min_dp_prev))