import math def calculate_volume(R, H, D): a = D / (2 * R) if a >= 1: return 0.0 t_max = 1 - a # Define the integrand for I1 def integrand(t): s = 1 - t if s < a: return 0.0 arg = a / s if arg >= 1: return 0.0 return (s ** 2) * math.acos(arg) # Numerical integration using Simpson's rule for I1 n = 1000000 # Adjust this number based on required precision and speed a_int = 0.0 b_int = t_max h = (b_int - a_int) / n total = integrand(a_int) + integrand(b_int) for i in range(1, n): t = a_int + i * h coeff = 4 if i % 2 == 1 else 2 total += coeff * integrand(t) I1 = h * total / 3 # Calculate I2 using the derived formula sqrt_term = math.sqrt(1 - a**2) log_term = math.log((1 + sqrt_term) / a) if a != 0 else 0 I2 = R * sqrt_term - R * a**2 * log_term # Calculate the volume volume = H * (2 * R**2 * I1 - (D / 2) * I2) return volume # Read input R, H, D = map(float, input().split()) # Compute the volume vol = calculate_volume(R, H, D) # Output with sufficient precision print("{0:.12f}".format(vol))