MOD = 998244353 def main(): import sys input = sys.stdin.read().split() idx = 0 N = int(input[idx]) idx += 1 K = int(input[idx]) idx += 1 A = list(map(int, input[idx:idx+N])) max_fact = K fact = [1] * (max_fact + 1) for i in range(1, max_fact +1): fact[i] = fact[i-1] * i % MOD inv_fact = [1] * (max_fact +1) inv_fact[max_fact] = pow(fact[max_fact], MOD-2, MOD) for i in range(max_fact-1, -1, -1): inv_fact[i] = inv_fact[i+1] * (i+1) % MOD def euler_phi(m): if m == 0: return 0 res = m i = 2 while i * i <= m: if m % i == 0: while m % i ==0: m //= i res -= res //i i +=1 if m >1: res -= res //m return res def divisors(n): divs = set() for i in range(1, int(n**0.5)+1): if n %i ==0: divs.add(i) divs.add(n//i) return sorted(divs) divs = divisors(K) ans =0 for d in divs: if K %d !=0: continue L = K //d dp = [0]*(d+1) dp[0] =1 for a in A: u = a // L m_max = min(u, d) if m_max ==0: continue new_dp = [0]*(d+1) for s in range(d+1): if dp[s] ==0: continue for m in range(0, m_max+1): if s +m >d: break new_dp[s +m] = (new_dp[s+m] + dp[s] * inv_fact[m]) % MOD dp = new_dp f_d = dp[d] * fact[d] % MOD m = K //d phi_val = euler_phi(m) ans = (ans + f_d * phi_val) % MOD inv_K = pow(K, MOD-2, MOD) ans = ans * inv_K % MOD print(ans) if __name__ == '__main__': main()