import sys MOD = 998244353 def main(): N, B, C = map(int, sys.stdin.readline().split()) # Precompute factorial and inverse factorial modulo MOD max_n = N fact = [1] * (max_n + 1) for i in range(1, max_n + 1): fact[i] = fact[i - 1] * i % MOD inv_fact = [1] * (max_n + 1) inv_fact[max_n] = pow(fact[max_n], MOD - 2, MOD) for i in range(max_n - 1, -1, -1): inv_fact[i] = inv_fact[i + 1] * (i + 1) % MOD def comb(s): if s < 0 or s > N: return 0 return fact[N] * inv_fact[s] % MOD * inv_fact[N - s] % MOD # Precompute comb_cache for 0 <= s <= N comb_cache = [comb(s) for s in range(N + 1)] dp = {0: 1} for k in range(61): new_dp = dict() Bk = (B >> k) & 1 Ck = (C >> k) & 1 for c_in, ways in dp.items(): # Check if the condition Ck == (Bk - c_in) mod 2 if (Ck != (Bk - c_in) % 2): continue # Calculate possible c_out range numerator_min = c_in - Bk c_out_min = max(0, (numerator_min + 1) // 2) numerator_max = N + c_in - Bk c_out_max = numerator_max // 2 if c_out_min > c_out_max: continue for c_out in range(c_out_min, c_out_max + 1): s = 2 * c_out + Bk - c_in if s < 0 or s > N: continue comb_val = comb_cache[s] new_dp[c_out] = (new_dp.get(c_out, 0) + ways * comb_val) % MOD dp = new_dp print(dp.get(0, 0) % MOD) if __name__ == "__main__": main()