#ifndef INCLUDE_MODE
#define INCLUDE_MODE
// #define REACTIVE
// #define USE_GETLINE
/* #define SUBMIT_ONLY */
#define DEBUG_OUTPUT
#define SAMPLE_CHECK F
#endif
#ifdef INCLUDE_MAIN
VO Solve()
{
CEXPR( int , p , 998243353 );
using MOD = Mod
;
vector factor = {443,2253371};
int euler = ( factor[0] - 1 ) * ( factor[1] - 1 );
PowerMemoriser pm{ factor };
CIN( int , T , Tau );
FOREQ( t , 1 , Tau ){
CIN( int , N , M );
if( t == T ){
COUT( -1 );
} else {
auto [a,val] = CombinationFactorialValuative( M , N , factor , euler );
COUT( a * pm.Get( 0 , val[0] ) * pm.Get( 1 , val[1] ) );
}
}
}
REPEAT_MAIN(1);
#else /* INCLUDE_MAIN */
#ifdef INCLUDE_SUB
/* COMPAREに使用。圧縮時は削除する。*/
MP Naive( int N , int M , int K , const vector& A , const bool& debug_output = true )
// MP Naive( ll N , ll M , ll K , const vector& A , const bool& debug_output = true )
{
MP answer{};
return answer;
}
/* COMPAREに使用。圧縮時は削除する。*/
MP Answer( int N , int M , int K , const vector& A , const bool& debug_output = true )
// MP Answer( ll N , ll M , ll K , const vector& A , const bool& debug_output = true )
{
MP answer{};
return answer;
}
/* 圧縮時は中身だけ削除する。*/
IN VO Experiment()
{
/* // 1変数 ../Contest/Template/Experiment/OneVariable.txt */
/* // 2変数 ../Contest/Template/Experiment/TwoVariable.txt */
/* // 3変数 ../Contest/Template/Experiment/ThreeVariable.txt */
}
/* 圧縮時は中身だけ削除する。*/
IN VO SmallTest()
{
/* // 数 ../Contest/Template/SmallTest/Number.txt */
/* // 配列 ../Contest/Template/SmallTest/Array.txt */
/* // 順列 ../Contest/Template/SmallTest/Permutation.txt */
/* // 文字列 ../Contest/Template/SmallTest/String.txt */
/* // グリッド ../Contest/Template/SmallTest/Grid.txt */
/* // グラフ ../Contest/Template/SmallTest/Graph.txt */
/* // 重み付きグラフ ../Contest/Template/SmallTest/WeightedGraph.txt */
/* // 区間クエリ ../Contest/Template/SmallTest/IntervalQuery.txt */
CERR( "全ての出力が一致しました。" );
}
/* 圧縮時は中身だけ削除する。*/
IN VO RandomTest( const int& test_case_num )
{
/* // 数 ../Contest/Template/RandomTest/Number.txt */
/* // 配列 ../Contest/Template/RandomTest/Array.txt */
/* // 順列 ../Contest/Template/RandomTest/Permutation.txt */
/* // 文字列 ../Contest/Template/RandomTest/String.txt */
/* // グリッド ../Contest/Template/RandomTest/Grid.txt */
/* // グラフ ../Contest/Template/RandomTest/Graph.txt */
/* // 重み付きグラフ ../Contest/Template/RandomTest/WeightedGraph.txt */
/* // 区間クエリ ../Contest/Template/RandomTest/IntervalQuery.txt */
/* // 多種クエリ ../Contest/Template/RandomTest/MultiTypeQuery.txt */
REPEAT( test_case_num ){
}
CERR( "全ての出力が一致しました。" );
}
#define INCLUDE_MAIN
#include __FILE__
#else /* INCLUDE_SUB */
#ifdef INCLUDE_LIBRARY
/* VVV 常設でないライブラリは以下に挿入する。*/
/* // AffineSpace ../Contest/Template/Library/AffineSpace.txt */
/* // Arithmetic ../Contest/Template/Library/Arithmetic.txt */
/* // BFS ../Contest/Template/Library/BFS.txt */
/* // BIT ../Contest/Template/Library/BIT.txt */
/* // CoordinateCompress SetTheory/DirectProduct/CoordinateCompress/compress.txt */
/* // DFS ../Contest/Template/Library/DFS.txt */
/* // DifferenceSequence ../Contest/Template/Library/DifferenceSequence.txt */
/* // Dijkstra ../Contest/Template/Library/Dijkstra.txt */
/* // Knapsack ../Contest/Template/Library/Knapsack.txt */
/* // Matrix ../Contest/Template/Library/Matrix.txt */
/* // Set ../Contest/Template/Library/Set.txt */
/* // Polynomial ../Contest/Template/Library/Polynomial.txt */
/* // SqrtDecomposition ../Contest/Template/Library/SqrtDecomposition.txt */
/* // UnionFind ../Contest/Template/Library/UnionFind.txt */
#ifdef DEBUG
#include "c:/Users/user/Documents/Programming/Mathematics/Combinatorial/Combination/a_Body.hpp"
#else
// - intやllの時はオーバーフローしうることに注意。
// - Modは法pが素数でないと商の計算が合わないことに注意。
// - DyamicModは法nが素数でない時はSetModulo(n,φ(n)-1)としないと商の計算が合わないことに注意。
// CombinationCumulativeProduct(n,m) 均しO(1)(nごとに合計O(min(m,n-m)))
// CombinationCumulativeProductValuative(n,m,factor) 均しO(L)(前計算O(log n)、nごとに合計O(min(m,n-m)(L+log min(m,n-m))))
// CombinationFactorial(n,m) O(1)(前計算O(n)、n<=20)
// CombinationFactorialValuative(n,m,factor) O(L)(前計算O(n(L+log n)))
TE INT CombinationCumulativeProductRecursion(CO INT& n,CO INT& m,CO bool& reset){ST Map> memory{};auto& memory_n = memory[n];if(memory_n.empty()){memory_n.push_back(1);}INT SZ;WH((SZ = memory_n.SZ())<= m){memory_n.push_back(memory_n.back()*(n - SZ + 1)/ SZ);}if(reset){INT AN = memory_n[m];memory.erase(n);RE AN;}RE memory_n[m];}TE IN INT1 CombinationCumulativeProduct(CO INT1& n,INT2 m,CO bool& reset = false){CO INT1 m_copy = MO(m);RE m < 0 || n < m_copy?CombinationCumulativeProductRecursion(n,INT1{0},reset)- 1:CombinationCumulativeProductRecursion(n,min(m_copy,n - m_copy),reset);}TE IN pair> CombinationCumulativeProductValuativeRecursion(CO INT& n,CO INT& m,CO VEC& factor,CRI euler,CO bool& reset){ST CO int L = factor.SZ();AS(L == int(factor.SZ()));ST Map,VE>>> memory{};if(n < m){if(reset){memory.erase(n);}RE{MOD{0},VE(L)};}auto&[comb,EX]= memory[n];if(comb.empty()){comb.push_back(1);EX.push_back(VE(L));}INT SZ;WH((SZ = comb.SZ())<= m){MOD c = comb.back();VE e = EX.back();for(int num = 0;num < 2;num++){INT r = num == 0?n - SZ + 1:SZ;for(int i = 0;i < L;i++){auto& p = factor[i];WH(r % p == 0){r /= p;num == 0?++e[i]:--e[i];}}num == 0?c *= r:euler == -1?c /= r:c *= Power(MOD{r},euler - 1);}comb.push_back(MO(c));EX.push_back(MO(e));}if(reset){pair> AN{MO(comb[m]),MO(EX[m])};memory.erase(n);RE AN;}RE{comb[m],EX[m]};}TE IN pair> CombinationCumulativeProductValuative(CO INT1& n,INT2 m,CO VEC& factor,CRI euler,CO bool& reset = false){CO INT1 m_copy = MO(m);RE CombinationCumulativeProductValuativeRecursion(n,m < 0 || n < m_copy?n + 1:min(m_copy,n - m_copy),factor,euler,reset);}TE INT CombinationFactorialRecursion(CO INT& n,CO INT& m){ST VE factorial{1};INT SZ;WH((SZ = factorial.SZ())<= n){factorial.push_back(factorial.back()* SZ);}RE factorial[n]/ factorial[m]/ factorial[n-m];}TE IN INT1 CombinationFactorial(CO INT1& n,INT2 m){AS(((is_same_v || is_same_v)&& n <= 12)||((is_same_v || is_same_v)&& n <= 20));CO INT1 m_copy = MO(m);RE m < 0 || n < m_copy?INT1(0):CombinationFactorialRecursion(n,m_copy);}TE pair> CombinationFactorialValuativeRecursion(CO INT& n,CO INT& m,CO VEC& factor,CRI euler){ST CO int L = factor.SZ();AS(L == int(factor.SZ()));if(n < m){RE{MOD{0},VE(L)};}ST VE factorial{1};ST VE factorial_inv{1};ST VE EX(1,VE(L));INT SZ;WH((SZ = factorial.SZ())<= n){VE e = EX.back();for(int i = 0;i < L;i++){auto& p = factor[i];WH(SZ % p == 0){SZ /= p;e[i]++;}}factorial.push_back(factorial.back()* SZ);factorial_inv.push_back(euler == -1?factorial_inv.back()/ SZ:factorial_inv.back()* Power(MOD{SZ},euler - 1));EX.push_back(MO(e));}VE e = EX[n];for(int num = 0;num < 2;num++){auto& denom = EX[num==0?m:n-m];for(int i = 0;i < L;i++){e[i]-= denom[i];}}RE{factorial[n]* factorial_inv[m]* factorial_inv[n-m],MO(e)};}TE IN pair> CombinationFactorialValuative(CO INT1& n,INT2 m,CO VEC& factor,CRI euler){CO INT1 m_copy = MO(m);RE CombinationFactorialValuativeRecursion(n,m < 0 || n < m_copy?n + 1:m_copy,factor,euler);}
TE CL PowerMemoriser{PU:VE m_base;VE> m_val;TE IN PowerMemoriser(CO VEC& base);IN INT Get(CRI i,CRI j)NE;};
TE TE IN PowerMemoriser::PowerMemoriser(CO VEC& base):m_base(),m_val(){for(auto& n:base){m_base.push_back(n);m_val.push_back({1});}}TE IN INT PowerMemoriser::Get(CRI i,CRI j)NE{WH(int(m_val[i].SZ())<= j){m_val[i].push_back(m_val[i].back()* m_base[i]);}RE m_val[i][j];}
// PrimeEnumeration:
// val_limit = 316 ≒ sqrt(1e5) -> length = 65
// val_limit = 448 ≒ sqrt(2e5) -> length = 86
// val_limit = 1e5 -> length = 9592
// val_limit = 1e6 -> length = 78498
// nの素因数分解:PrimeFactorisation(CO PE/LD& pe,CO INT& n) O(√n/log n)/O(log n)
// nの素羃への分解:PrimePowerFactorisation(CO PE/LD& pe,CO INT& n) O(√n/log n)/O(log n)
// オイラー関数:EulerFunction(CO PE/LD& pe,CO INT& n) O(√n/log n)/O(log n)
// n_max以下でのオイラー関数:TotalEulerFunction(CO PE& pe,CO INT& n_max) O(n_max log n_max)
TE CL PrimeEnumeration{PU:bool m_is_composite[val_limit];int m_val[le_max];int m_le;CE PrimeEnumeration();IN CRI OP[](CRI i)CO;CE CRI Get(CRI i)CO;CE CO bool& IsComposite(CRI n)CO;CE CRI length()CO NE;};
TE CE PrimeEnumeration::PrimeEnumeration():m_is_composite(),m_val(),m_le(0){for(int i = 2;i < val_limit;i++){if(! m_is_composite[i]){for(int j = ll(i)* i;j < val_limit;j += i){m_is_composite[j]= true;}m_val[m_le++]= i;if(m_le >= le_max){break;}}}}TE IN CRI PrimeEnumeration::OP[](CRI i)CO{AS(0 <= i && i < m_le);RE m_val[i];}TE CE CRI PrimeEnumeration::Get(CRI i)CO{RE m_val[i];}TE CE CO bool& PrimeEnumeration::IsComposite(CRI n)CO{RE m_is_composite[n];}TE CE CRI PrimeEnumeration::length()CO NE{RE m_le;}
CL HeapPrimeEnumeration{PU:int m_val_limit;VE m_is_composite;VE m_val;int m_le;IN HeapPrimeEnumeration(CRI val_limit);IN CRI OP[](CRI i)CO;IN CRI Get(CRI i)CO;IN bool IsComposite(CRI n)CO;IN CRI length()CO NE;};
IN HeapPrimeEnumeration::HeapPrimeEnumeration(CRI val_limit):m_val_limit(val_limit),m_is_composite(m_val_limit),m_val(),m_le(0){for(int i = 2;i < m_val_limit;i++){if(! m_is_composite[i]){for(int j = ll(i)* i;j < val_limit;j += i){m_is_composite[j]= true;}m_val.push_back(i);}}m_le = m_val.SZ();}IN CRI HeapPrimeEnumeration::OP[](CRI i)CO{AS(0 <= i && i < m_le);RE m_val[i];}IN CRI HeapPrimeEnumeration::Get(CRI i)CO{RE OP[](i);}IN bool HeapPrimeEnumeration::IsComposite(CRI n)CO{AS(0 <= n && n < m_val_limit);RE m_is_composite[n];}IN CRI HeapPrimeEnumeration::length()CO NE{RE m_le;}
TE auto CheckPE(CO PE& pe)-> decltype(pe.IsComposite(0),true_type());TE false_type CheckPE(...);TE CE bool IsPE = decltype(CheckPE(declval()))();
TE CL LeastDivisor{PU:int m_val[val_limit];CE LeastDivisor()NE;IN CRI OP[](CRI i)CO;CE CRI Get(CRI i)CO;CE int length()CO NE;};
TE CE LeastDivisor::LeastDivisor()NE:m_val{}{for(int d = 2;d < val_limit;d++){if(m_val[d]== 0){for(int n = d;n < val_limit;n += d){m_val[n]== 0?m_val[n]= d:d;}}}}TE IN CRI LeastDivisor::OP[](CRI i)CO{AS(0 <= i && i < val_limit);RE m_val[i];}TE CE CRI LeastDivisor::Get(CRI i)CO{RE m_val[i];}TE CE int LeastDivisor::length()CO NE{RE val_limit;}
CL HeapLeastDivisor{PU:int m_val_limit;VE m_val;IN HeapLeastDivisor(CRI val_limit)NE;IN CRI OP[](CRI i)CO;IN CRI Get(CRI i)CO;IN CRI length()CO NE;};
IN HeapLeastDivisor::HeapLeastDivisor(CRI val_limit)NE:m_val_limit(val_limit),m_val(m_val_limit){for(int d = 2;d < m_val_limit;d++){if(m_val[d]== 0){for(int n = d;n < m_val_limit;n += d){m_val[n]== 0?m_val[n]= d:d;}}}}IN CRI HeapLeastDivisor::OP[](CRI i)CO{AS(0 <= i && i < m_val_limit);RE m_val[i];}IN CRI HeapLeastDivisor::Get(CRI i)CO{RE m_val[i];}IN CRI HeapLeastDivisor::length()CO NE{RE m_val_limit;}
TE auto PrimeFactorisation(CO PE& pe,INT n)-> enable_if_t,pair,VE>>{AS(n > 0);VE P{};VE E{};CRI le = pe.length();for(int i = 0;i < le;i++){auto& p = pe[i];if(n % p == 0){int e = 1;WH((n /= p)% p == 0){e++;}P.push_back(p);E.push_back(e);}else if(n / p < p){break;}}if(n != 1){P.push_back(n);E.push_back(1);}RE{MO(P),MO(E)};}TE auto PrimeFactorisation(CO LD& ld,int n)-> enable_if_t,pair,VE>>{AS(n > 0);VE P{};VE E{};if(n > 1){P.push_back(ld[n]);E.push_back(1);n /= ld[n];}WH(n > 1){if(P.back()!= ld[n]){P.push_back(ld[n]);E.push_back(1);}else{E.back()++;}n /= ld[n];}RE{MO(P),MO(E)};}TE auto PrimePowerFactorisation(CO PE& pe,INT n)-> enable_if_t,tuple,VE,VE>>{AS(n > 0);VE P{};VE E{};VE Q{};CRI le = pe.length();for(int i = 0;i < le;i++){auto& p = pe[i];if(n % p == 0){int e = 1;INT q = p;WH((n /= p)% p == 0){e++;q *= p;}P.push_back(p);E.push_back(e);Q.push_back(q);}else if(n / p < p){break;}}if(n != 1){P.push_back(n);E.push_back(1);Q.push_back(n);}RE{MO(P),MO(E),MO(Q)};}TE auto PrimePowerFactorisation(CO LD& ld,int n)-> enable_if_t,tuple,VE,VE>>{AS(n > 0);VE P{};VE E{};VE Q{};if(n > 1){P.push_back(ld[n]);E.push_back(1);Q.push_back(ld[n]);n /= ld[n];}WH(n > 1){if(P.back()!= ld[n]){P.push_back(ld[n]);E.push_back(1);Q.push_back(ld[n]);}else{Q.back()*= ld[n];E.back()++;}n /= ld[n];}RE{MO(P),MO(E),MO(Q)};}
TE tuple,VE> EulerFunction_Body(PF pf,CO INT& n){auto[P,E]= pf(n);INT AN = n;for(auto& p:P){AN -= AN / p;}RE{AN,MO(P),MO(E)};}TE IN tuple,VE> EulerFunction(CO PE& pe,CO INT& n){RE EulerFunction_Body([&](CRI i){RE PrimeFactorisation(pe,i);},n);}TE VE TotalEulerFunction(CO PE& pe,CO INT& n_max){VE AN(n_max + 1);for(INT n = 1;n <= n_max;n++){AN[n]= n;}auto quotient = AN;CRI le = pe.length();for(int i = 0;i < le;i++){auto& p_i = pe[i];INT n = 0;WH((n += p_i)<= n_max){INT& AN_n = AN[n];INT& quotient_n = quotient[n];AN_n -= AN_n / p_i;WH((quotient_n /= p_i)% p_i == 0){}}}for(INT n = le == 0?2:pe[le - 1];n <= n_max;n++){CO INT& quotient_n = quotient[n];if(quotient_n != 1){INT& AN_n = AN[n];AN_n -= AN_n / quotient_n;}}RE AN;}
#endif
/* AAA 常設でないライブラリは以上に挿入する。*/
#define INCLUDE_SUB
#include __FILE__
#else /* INCLUDE_LIBRARY */
#ifdef DEBUG
#define _GLIBCXX_DEBUG
#else
#pragma GCC optimize ( "O3" )
#pragma GCC optimize ( "unroll-loops" )
#pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )
#define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE1 )
#define ASSERT( A , MIN , MAX ) AS( ( MIN ) <= A && A <= ( MAX ) )
#define REPEAT_MAIN( BOUND ) START_MAIN; CEXPR( int , test_case_num_bound , BOUND ); int test_case_num = 1; if CE( test_case_num_bound > 1 ){ FINISH_MAIN
#ifdef USE_GETLINE
#define SET_SEPARATE( SEPARATOR , ... ) VariadicGetline( cin , SEPARATOR , __VA_ARGS__ )
#define SET( ... ) SET_SEPARATE( '\n' , __VA_ARGS__ )
#define GETLINE_SEPARATE( SEPARATOR , ... ) string __VA_ARGS__; SET_SEPARATE( SEPARATOR , __VA_ARGS__ )
#define GETLINE( ... ) GETLINE_SEPARATE( '\n' , __VA_ARGS__ )
#define FINISH_MAIN GETLINE( test_case_num_str ); test_case_num = stoi( test_case_num_str ); ASSERT( test_case_num , 1 , test_case_num_bound ); } REPEAT( test_case_num ){ Solve(); } }
#else
#define SET( ... ) VariadicCin( cin , __VA_ARGS__ )
#define CIN( LL , ... ) LL __VA_ARGS__; SET( __VA_ARGS__ )
#define SET_A( I , N , ... ) VariadicResize( N + I , __VA_ARGS__ ); FOR( VARIABLE_FOR_SET_A , 0 , N ){ VariadicSet( cin , VARIABLE_FOR_SET_A + I , __VA_ARGS__ ); }
#define CIN_A( LL , I , N , ... ) VE __VA_ARGS__; SET_A( I , N , __VA_ARGS__ )
#define CIN_AA( LL , I0 , N0 , I1 , N1 , VAR ) VE> VAR( N0 + I0 ); FOR( VARIABLE_FOR_CIN_AA , 0 , N0 ){ SET_A( I1 , N1 , VAR[VARIABLE_FOR_CIN_AA + I0] ); }
#define FINISH_MAIN SET_ASSERT( test_case_num , 1 , test_case_num_bound ); } REPEAT( test_case_num ){ Solve(); } }
#endif
#define SET_ASSERT( A , MIN , MAX ) SET( A ); ASSERT( A , MIN , MAX )
#define SOLVE_ONLY
#define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << ENDL
#define COUTNS( ... ) VariadicCoutNonSep( cout , __VA_ARGS__ )
#define CERR( ... )
#define CERRNS( ... )
#define COUT_A( I , N , A ) CoutArray( cout , I , N , A ) << ENDL
#define CERR_A( I , N , A )
#define TLE( CONDITION ) if( !( CONDITION ) ){ ll TLE_VAR = 1; while( TLE_VAR != 0 ){ ( TLE_VAR += 2 ) %= int( 1e9 ); } cerr << TLE_VAR << endl; }
#define MLE( CONDITION ) if( !( CONDITION ) ){ vector> MLE_VAR{}; REPEAT( 1e6 ){ MLE_VAR.push_back( vector( 1e6 ) ); } cerr << MLE_VAR << endl; }
#define OLE( CONDITION ) if( !( CONDITION ) ){ REPEAT( 1e8 ){ cerr << "OLE\n"; } }
#endif
#ifdef REACTIVE
#ifdef DEBUG
#define RSET( A , ... ) A = __VA_ARGS__
#else
#define RSET( A , ... ) SET( A )
#endif
#define RCIN( LL , A , ... ) LL A; RSET( A , __VA_ARGS__ )
#define ENDL endl
#else
#define ENDL "\n"
#endif
#include
using namespace std;
#define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) )
#define START_MAIN int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now(); double loop_average_time = 0.0 , loop_start_time = loop_average_time , current_time = loop_start_time; int loop_count = current_time; assert( loop_count == 0 )
#define CURRENT_TIME ( current_time = static_cast( chrono::duration_cast( chrono::system_clock::now() - watch ).count() / 1000.0 ) )
#define CHECK_WATCH( TL_MS ) ( CURRENT_TIME , loop_count == 0 ? loop_start_time = current_time : loop_average_time = ( current_time - loop_start_time ) / loop_count , ++loop_count , current_time < TL_MS - loop_average_time * 2 - 100.0 )
#define CEXPR( LL , BOUND , VALUE ) CE LL BOUND = VALUE
#define SET_A_ASSERT( I , N , A , MIN , MAX ) FOR( VARIABLE_FOR_SET_A , 0 , N ){ SET_ASSERT( A[VARIABLE_FOR_SET_A + I] , MIN , MAX ); }
#define SET_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX ) FOR( VARIABLE_FOR_SET_AA0 , 0 , N0 ){ FOR( VARIABLE_FOR_SET_AA1 , 0 , N1 ){ SET_ASSERT( A[VARIABLE_FOR_SET_AA0 + I0][VARIABLE_FOR_SET_AA1 + I1] , MIN , MAX ); } }
#define CIN_ASSERT( A , MIN , MAX ) decldecay_t( MAX ) A; SET_ASSERT( A , MIN , MAX )
#define CIN_A_ASSERT( I , N , A , MIN , MAX ) vector A( N + I ); SET_A_ASSERT( I , N , A , MIN , MAX )
#define CIN_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX ) vector A( N0 + I0 , vector( N1 + I1 ) ); SET_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( decldecay_t( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define FOREQ( VAR , INITIAL , FINAL ) for( decldecay_t( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )
#define FOREQINV( VAR , INITIAL , FINAL ) for( decldecay_t( INITIAL ) VAR = INITIAL ; VAR + 1 > FINAL ; VAR -- )
#define ITR( ARRAY ) auto begin_ ## ARRAY = ARRAY .BE() , itr_ ## ARRAY = begin_ ## ARRAY , end_ ## ARRAY = ARRAY .EN()
#define FOR_ITR( ARRAY ) for( ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ )
#define RUN( ARRAY , ... ) for( auto&& __VA_ARGS__ : ARRAY )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES )
#define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS ); cerr << fixed << setprecision( DECIMAL_DIGITS )
#define RETURN( ... ) SOLVE_ONLY; COUT( __VA_ARGS__ ); RE
#define COMPARE( ... ) auto naive = Naive( __VA_ARGS__ , false ); auto answer = Answer( __VA_ARGS__ , false ); bool match = naive == answer; CERR( "(" , #__VA_ARGS__ , ") == (" , __VA_ARGS__ , ") : Naive == " , naive , match ? "==" : "!=" , answer , "== Answer" ); if( !match ){ CERR( "出力の不一致が検出されました。" ); RE; }
#define CHECK( ... ) auto answer = Answer( __VA_ARGS__ , false ); CERR( "(" , #__VA_ARGS__ , ") == (" , __VA_ARGS__ , ") : Answer == " , answer )
/* 圧縮用 */
#define TE template
#define TY typename
#define US using
#define ST static
#define AS assert
#define IN inline
#define CL class
#define PU public
#define OP operator
#define CE constexpr
#define CO const
#define NE noexcept
#define RE return
#define WH while
#define VO void
#define VE vector
#define LI list
#define BE begin
#define EN end
#define SZ size
#define LE length
#define PW Power
#define MO move
#define TH this
#define CRI CO int&
#define CRUI CO uint&
#define CRL CO ll&
#define VI virtual
#define IS basic_istream
#define OS basic_ostream
#define ST_AS static_assert
#define reMO_CO remove_const
#define is_COructible_v is_constructible_v
#define rBE rbegin
/* 型のエイリアス */
#define decldecay_t(VAR)decay_t
TE US ret_t = decltype(declval()(declval()...));
TE US inner_t = TY T::type;
US uint = unsigned int;
US ll = long long;
US ull = unsigned long long;
US ld = long double;
US lld = __float128;
/* VVV 常設ライブラリは以下に挿入する。*/
#ifdef DEBUG
#include "C:/Users/user/Documents/Programming/Contest/Template/Local/a_Body.hpp"
#else
/* BinarySearch (2KB)*/
/* EXPRESSIONがANSWERの広義単調関数の時、EXPRESSION >= CONST_TARGETの整数解を格納。*/
#define BS(AN,MINIMUM,MAXIMUM,EXPRESSION,DESIRED_INEQUALITY,CO_TARGET,INEQUALITY_FOR_CHECK,UPDATE_U,UPDATE_L,UPDATE_AN)ST_AS(! is_same::value && ! is_same::value);ll AN = MINIMUM;{ll AN ## _L = MINIMUM;ll AN ## _R = MAXIMUM;AN = UPDATE_AN;ll EXPRESSION_BS;CO ll CO_TARGET_BS =(CO_TARGET);ll DIFFERENCE_BS;WH(AN ## _L < AN ## _R){DIFFERENCE_BS =(EXPRESSION_BS =(EXPRESSION))- CO_TARGET_BS;if(DIFFERENCE_BS INEQUALITY_FOR_CHECK 0){AN ## _R = UPDATE_U;}else{AN ## _L = UPDATE_L;}AN = UPDATE_AN;}if(AN ## _L > AN ## _R || !((EXPRESSION)DESIRED_INEQUALITY CO_TARGET_BS)){AN = MAXIMUM + 1;}}
/* 単調増加の時にEXPRESSION >= CO_TARGETの最小解を格納。*/
#define MIN_GEQ(AN,MINIMUM,MAXIMUM,EXPRESSION,CO_TARGET)BS(AN,MINIMUM,MAXIMUM,EXPRESSION,>=,CO_TARGET,>=,AN,AN + 1,(AN ## _L + AN ## _R)>> 1)
/* 単調増加の時にEXPRESSION <= CO_TARGETの最大解を格納。*/
#define MAX_LEQ(AN,MINIMUM,MAXIMUM,EXPRESSION,CO_TARGET)BS(AN,MINIMUM,MAXIMUM,EXPRESSION,<=,CO_TARGET,>,AN - 1,AN,(AN ## _L + 1 + AN ## _R)>> 1)
/* 単調減少の時にEXPRESSION >= CO_TARGETの最大解を格納。*/
#define MAX_GEQ(AN,MINIMUM,MAXIMUM,EXPRESSION,CO_TARGET)BS(AN,MINIMUM,MAXIMUM,EXPRESSION,>=,CO_TARGET,<,AN - 1,AN,(AN ## _L + 1 + AN ## _R)>> 1)
/* 単調減少の時にEXPRESSION <= CO_TARGETの最小解を格納。*/
#define MIN_LEQ(AN,MINIMUM,MAXIMUM,EXPRESSION,CO_TARGET)BS(AN,MINIMUM,MAXIMUM,EXPRESSION,<=,CO_TARGET,<=,AN,AN + 1,(AN ## _L + AN ## _R)>> 1)
/* TwoPoitnterApproach (2KB)*/
/* VAR_TPAは尺取り法用の変数名の接頭辞で、実際の変数名ではなく、_Lと_Rと_infoがつく。
ANSWER ## _temp = {VAR_TPA ## _L,VAR_TPA ## _R,VPA_TPA ## _info}を
{INIT,INIT,INFO_init}で初期化する。VPA_TPA ## _infoは区間和など。
ANSWER ## _tempがCONTINUE_CONDITIONを満たす限り、ANSWER ## _tempが
条件ON_CONDITIONを満たすか否かを判定し、それがtrueになるか
VAR_TAR ## _LがVAR_TAR ## _Rに追い付くまでVAR_TPA ## _LとVPA_TPA ## _infoの
更新操作UPDATE_Lを繰り返し、その後VAR_TPA ## _RとVPA_TPA ## _infoの
更新操作UPDATE_Rを行う。(マクロとコンマの制約上、関数オブジェクトを用いる)
ON_CONDITIONがtrueとなる極大閉区間とその時点でのinfoをANSWERに格納する。
例えば長さNの非負整数値配列Aで極大な正値区間とそこでの総和を取得したい場合
auto update_L = [&]( int& i_L , auto& i_info ){ i_info -= A[i_L++]; };
auto update_R = [&]( int& i_R , auto& i_info ){ if( ++i_R < N ){ i_info += A[i_R]; } };
TPA( interval , i , 0 , i_R < N , update_L( i_L , i_info ) , update_R( i_R , i_info ) , A[i_L] > 0 && A[i_R] > 0 , ll( A[0] ) );
とすればtuple値配列intervalに{左端,右端,総和}の列が格納される。
VAR_TPA ## _infoもintervalにコピーされるので、setやvectorなどのコピーのコストが
大きいデータを用いてon,off判定する時はTPAより前に宣言して使う。*/
#define TPA(AN,VAR_TPA,INIT,CONTINUE_CONDITION,UPDATE_L,UPDATE_R,ON_CONDITION,INFO_init)VE> AN{};{auto init_TPA = INIT;decldecay_t(AN.front())AN ## _temp ={init_TPA,init_TPA,INFO_init};auto AN ## _prev = AN ## _temp;auto& VAR_TPA ## _L = get<0>(AN ## _temp);auto& VAR_TPA ## _R = get<1>(AN ## _temp);auto& VAR_TPA ## _info = get<2>(AN ## _temp);bool on_TPA_prev = false;WH(true){bool continuing = CONTINUE_CONDITION;bool on_TPA = continuing &&(ON_CONDITION);if(on_TPA_prev && ! on_TPA){AN.push_back(AN ## _prev);}if(continuing){if(on_TPA || VAR_TPA ## _L == VAR_TPA ## _R){AN ## _prev = AN ## _temp;UPDATE_R;}else{UPDATE_L;}}else{break;}on_TPA_prev = on_TPA;}}
/* Random (1KB)*/
ll GetRand(CRI Rand_min,CRI Rand_max){AS(Rand_min <= Rand_max);ll AN = time(NULL);RE AN * rand()%(Rand_max + 1 - Rand_min)+ Rand_min;}
/* Set (2KB)*/
#define DC_OF_HASH(...)struct hash<__VA_ARGS__>{IN size_t OP()(CO __VA_ARGS__& n)CO;};
CL is_ordered{PU:is_ordered()= delete;TE ST CE auto Check(CO T& t)-> decltype(t < t,true_type());ST CE false_type Check(...);TE ST CE CO bool value = is_same_v< decltype(Check(declval())),true_type >;};
TE US Set = conditional_t>,unordered_set,conditional_t,set,VO>>;
#define DF_OF_POP_FOR_SET(SET)TE IN T pop_max(SET& S){AS(!S.empty());auto IT = --S.EN();T AN = *IT;S.erase(IT);RE AN;}TE IN T pop_min(SET& S){AS(!S.empty());auto IT = S.BE();T AN = *IT;S.erase(IT);RE AN;}TE IN SET& OP+=(SET& S,U u){S.insert(MO(u));RE S;}TE IN SET& OP-=(SET& S,CO U& u){S.erase(u);RE S;}TE IN CO T& Get(CO SET& S,int i){auto BE = S.BE(),EN = S.EN();auto& IT = i < 0?(++i,--EN):BE;WH(i > 0 && IT != EN){--i;++IT;}WH(i < 0 && IT != BE){++i;--IT;}AS(i == 0);RE *IT;}
#define DF_OF_UNION_FOR_SET(SET)TE IN SET& OP|=(SET& a0,CO SET& a1){for(auto& t:a1){a0 += t;}RE a0;}TE IN SET OP|(SET a0,CO SET& a1){RE MO(a0 |= a1);}
TE IN TY SET::const_iterator MaximumLeq(CO SET& S,CO T& t){auto IT = S.upper_bound(t);RE IT == S.BE()?S.EN():--IT;}TE IN TY SET::const_iterator MaximumLt(CO SET& S,CO T& t){auto IT = S.lower_bound(t);RE IT == S.BE()?S.EN():--IT;}TE IN TY SET::const_iterator MinimumGeq(CO SET& S,CO T& t){RE S.lower_bound(t);}TE IN TY SET::const_iterator MinimumGt(CO SET& S,CO T& t){RE S.upper_bound(t);}TE IN VO EraseBack(SET& S,ITERATOR& IT){IT = S.erase(IT);}TE IN VO EraseFront(SET& S,ITERATOR& IT){IT = S.erase(IT);IT == S.BE()?IT = S.EN():--IT;}TE TY SET,TY T,TY...Args> IN bool In(CO SET& S,CO T& t){RE S.count(t)== 1;}DF_OF_POP_FOR_SET(set);DF_OF_POP_FOR_SET(unordered_set);DF_OF_POP_FOR_SET(multiset);DF_OF_POP_FOR_SET(unordered_multiset);DF_OF_UNION_FOR_SET(set);DF_OF_UNION_FOR_SET(unordered_set);DF_OF_UNION_FOR_SET(multiset);DF_OF_UNION_FOR_SET(unordered_multiset);DF_OF_UNION_FOR_SET(VE);DF_OF_UNION_FOR_SET(LI);
/* Tuple (6KB)*/
#define DF_OF_AR_FOR_TUPLE(OPR)TE TY PAIR> IN auto OP OPR ## =(PAIR& t0,CO PAIR& t1)-> decltype((get<0>(t0),t0))&{get<0>(t0)OPR ## = get<0>(t1);get<1>(t0)OPR ## = get<1>(t1);RE t0;}TE TY TUPLE> IN auto OP OPR ## =(TUPLE& t0,CO TUPLE& t1)-> decltype((get<0>(t0),t0))&{get<0>(t0)OPR ## = get<0>(t1);get<1>(t0)OPR ## = get<1>(t1);get<2>(t0)OPR ## = get<2>(t1);RE t0;}TE TY TUPLE> IN auto OP OPR ## =(TUPLE& t0,CO TUPLE& t1)-> decltype((get<0>(t0),t0))&{get<0>(t0)OPR ## = get<0>(t1);get<1>(t0)OPR ## = get<1>(t1);get<2>(t0)OPR ## = get<2>(t1);get<3>(t0)OPR ## = get<3>(t1);RE t0;}TE TY PAIR> IN auto OP OPR ## =(PAIR& t0,CO ARG& t1)-> decltype((get<0>(t0),t0))&{get<0>(t0)OPR ## = t1;get<1>(t0)OPR ## = t1;RE t0;}TE TY TUPLE> IN auto OP OPR ## =(TUPLE& t0,CO ARG& t1)-> decltype((get<0>(t0),t0))&{get<0>(t0)OPR ## = t1;get<1>(t0)OPR ## = t1;get<2>(t0)OPR ## = t1;RE t0;}TE TY TUPLE> IN auto OP OPR ## =(TUPLE& t0,CO ARG& t1)-> decltype((get<0>(t0),t0))&{get<0>(t0)OPR ## = t1;get<1>(t0)OPR ## = t1;get<2>(t0)OPR ## = t1;get<3>(t0)OPR ## = t1;RE t0;}TE TY TUPLE,TY...ARGS,TY ARG> IN auto OP OPR(CO TUPLE& t0,CO ARG& t1)-> decldecay_t((get<0>(t0),t0)){auto t = t0;RE MO(t OPR ## = t1);}
#define DF_OF_INCREMENT_FOR_TUPLE(INCR)TE TY PAIR> IN auto OP INCR(PAIR& t)-> decltype((get<0>(t),t))&{INCR get<0>(t);INCR get<1>(t);RE t;}TE TY TUPLE> IN auto OP INCR(TUPLE& t)-> decltype((get<0>(t),t))&{INCR get<0>(t);INCR get<1>(t);INCR get<2>(t);RE t;}TE TY TUPLE> IN auto OP INCR(TUPLE& t)-> decltype((get<0>(t),t))&{INCR get<0>(t);INCR get<1>(t);INCR get<2>(t);INCR get<3>(t);RE t;}
TE IN IS& OP>>(IS& is,tuple& arg){RE is >> get<0>(arg);}TE TY V> IN auto OP>>(IS& is,V& arg)-> decltype((get<0>(arg),is))&{RE is >> get<0>(arg)>> get<1>(arg);}TE IN IS& OP>>(IS& is,tuple& arg){RE is >> get<0>(arg)>> get<1>(arg)>> get<2>(arg);}TE IN IS& OP>>(IS& is,tuple& arg){RE is >> get<0>(arg)>> get<1>(arg)>> get<2>(arg)>> get<3>(arg);}TE IN OS& OP<<(OS& os,CO tuple& arg){RE os << get<0>(arg);}TE TY V> IN auto OP<<(OS& os,CO V& arg)-> decltype((get<0>(arg),os))&{RE os << get<0>(arg)<< " " << get<1>(arg);}TE IN OS& OP<<(OS& os,CO tuple& arg){RE os << get<0>(arg)<< " " << get<1>(arg)<< " " << get<2>(arg);}TE IN OS& OP<<(OS& os,CO tuple& arg){RE os << get<0>(arg)<< " " << get<1>(arg)<< " " << get<2>(arg)<< " " << get<3>(arg);}DF_OF_AR_FOR_TUPLE(+);TE TY V> IN auto OP-(CO V& t)-> decltype(get<0>(t),t){RE{-get<0>(t),-get<1>(t)};}TE IN tuple OP-(CO tuple& t){RE{-get<0>(t),-get<1>(t),-get<2>(t)};}TE IN tuple OP-(CO tuple& t){RE{-get<0>(t),-get<1>(t),-get<2>(t),-get<3>(t)};}DF_OF_AR_FOR_TUPLE(-);DF_OF_AR_FOR_TUPLE(*);DF_OF_AR_FOR_TUPLE(/);DF_OF_AR_FOR_TUPLE(%);DF_OF_INCREMENT_FOR_TUPLE(++);DF_OF_INCREMENT_FOR_TUPLE(--);
TE CL TupleAccessIndex{};TE CL Tuple:PU tuple{PU:IN Tuple(Types&&... args);TE IN Tuple(Args&&... args);TE IN auto& OP[](CO TupleAccessIndex& i)NE;TE IN CO auto& OP[](CO TupleAccessIndex& i)CO NE;};TE CL tuple_size>:PU tuple_size>{};TE CL tuple_element>:PU tuple_element>{};
TE US Pair = Tuple;TE US T2 = Pair;TE US T3 = Tuple;TE US T4 = Tuple;
CE TupleAccessIndex<0> O{};CE TupleAccessIndex<1> I{};CE TupleAccessIndex<2> II{};CE TupleAccessIndex<3> III{};
TE IN Tuple::Tuple(Types&&... args):tuple(MO(args)...){}TE TE IN Tuple::Tuple(Args&&... args):tuple(forward(args)...){}TE TE IN auto& Tuple::OP[](CO TupleAccessIndex& i)NE{RE get(*TH);}TE TE IN CO auto& Tuple::OP[](CO TupleAccessIndex& i)CO NE{RE get(*TH);}
#define DF_OF_HASH_FOR_TUPLE(PAIR)TE