import sys input = lambda :sys.stdin.readline()[:-1] ni = lambda :int(input()) na = lambda :list(map(int,input().split())) yes = lambda :print("yes");Yes = lambda :print("Yes");YES = lambda : print("YES") no = lambda :print("no");No = lambda :print("No");NO = lambda : print("NO") ####################################################################### from functools import lru_cache def naive(A, B): @lru_cache(maxsize=None) def saiki(a, b): if all(x == 0 for x in a) and all(x == 0 for x in b): return False elif all(x == 0 for x in a): z = 1 for i in range(len(b)): for x in range(b[i]): z &= saiki(tuple(A), b[:i] + (x, ) + b[i+1:]) return 1 ^ z else: z = 1 for i in range(len(a)): for x in range(a[i]): z &= saiki(a[:i]+(x, )+a[i+1:], b) return z ^1 return saiki(tuple(A), tuple(B)) def solve(a, b): x = 0 for i in range(len(a)): x ^= a[i] y = 0 for i in range(len(b)): y ^= b[i] if x: return 1 elif any(x > 1 for x in a): return 0 else: return int(y > 0) # a = (2, 4, 5) # for x in range(10): # for y in range(x, 10): # for z in range(y, 10): # print(x, y, z, naive(a, (x, y, z)), solve(a, (x, y, z))) # assert naive(a, (x, y, z)) == solve(a, (x, y, z)) n, m = na() a = na() b = na() print(["Second", "First"][naive(a, b)])