#include #include #include using namespace std; using namespace atcoder; using mint = modint998244353; #define rep(i,n) for (int i = 0; i < (n); ++i) #define Inf32 1000000001 #define Inf64 4000000000000000001LL struct bcc_graph { public: bcc_graph() : bcc_graph(0) {} bcc_graph(int n) { _n = n; } void add_edge(int from, int to) { assert(from != to); assert(0 <= from && from < _n); assert(0 <= to && to < _n); edges.push_back({from,to}); answer.clear(); } void dfs(int u){ ord[u] = low[u] = _ord++; for(int i=start[u];i= ord[u])continue; low[u] = min(low[u],ord[v]); } } } void dfs2(int u,int ci){ f[u] = true; for(int i=start[u];i> bcc_edges() { if(answer.size()>0)return answer; { start.assign(_n + 1, 0); elist.resize(edges.size()*2); for (auto e : edges) { start[e.first + 1]++; start[e.second + 1]++; } for (int i = 1; i <= _n; i++) { start[i] += start[i - 1]; } auto counter = start; rep(i,edges.size()){ elist[counter[edges[i].first]++] = i; elist[counter[edges[i].second]++] = i; } } ord.assign(_n,-1); low.assign(_n,-1); _ord = 0; rep(i,_n){ if(ord[i]==-1){ dfs(i); } } f.assign(_n,false); fe.assign(edges.size(),false); rep(i,_n){ if(!f[i]){ dfs2(i,-1); } } return answer; } std::vector> bcc_vertecies() { vector ind(_n,-1); if(answer.size()==0)bcc_edges(); vector> res(answer.size()); rep(i,answer.size()){ rep(j,answer[i].size()){ rep(k,2){ int x = edges[answer[i][j]].first; if(k)x = edges[answer[i][j]].second; if(ind[x] start; vector elist; vector> edges; vector ord,low; vector f,fe; vector> answer; }; struct HLD{ vector sz,parent,depth,root,pos; vector arr; HLD(vector> &E){ sz.resize(E.size(),1); parent.resize(E.size(),0); depth.resize(E.size(),0); root.resize(E.size(),0); pos.resize(E.size(),0); dfs(0,-1,E); dfs2(0,-1,E,0); } void dfs(int now,int p,vector> &E){ parent[now] = p; if(p==-1){ depth[now] = 0; } else{ depth[now] = depth[p]+1; } for(int i=0;i> &E,int r){ pos[now] = arr.size(); arr.push_back(now); root[now] = r; int maxi = 0; int ind = -1; for(int i=0;i> query(int u,int v){ vector> ret; int t = 0; while(root[u]!=root[v]){ if(depth[root[u]] <= depth[root[v]]){ ret.insert(ret.begin()+t,{pos[root[v]], pos[v]}); v = parent[root[v]]; } else{ ret.insert(ret.begin()+t,{pos[u],pos[root[u]]}); u = parent[root[u]]; t++; } } ret.insert(ret.begin()+t,{pos[u],pos[v]}); return ret; } int lca(int u,int v){ for(;;v=parent[root[v]]){ if(pos[u]>pos[v])swap(u,v); if(root[u]==root[v])return u; } } int get_distance(int u,int v){ return depth[u] + depth[v] - 2 * depth[lca(u,v)]; } }; int main(){ int n,m; cin>>n>>m; bcc_graph B(n); rep(i,m){ int u,v; cin>>u>>v; u--,v--; B.add_edge(u,v); } auto b = B.bcc_vertecies(); vector d(n); rep(i,b.size()){ rep(j,b[i].size()){ d[b[i][j]] ++; } } vector> E(b.size()); vector blocks(n,-1); rep(i,n){ if(d[i]>=2){ blocks[i] = E.size(); E.push_back({}); } } rep(i,b.size()){ rep(j,b[i].size()){ if(blocks[b[i][j]]!=-1){ E[blocks[b[i][j]]].push_back(i); E[i].push_back(blocks[b[i][j]]); } else{ blocks[b[i][j]] = i; } } } HLD H(E); fenwick_tree F(E.size()); rep(i,E.size()){ if(i < b.size())continue; F.add(H.pos[i],1); } int _q; cin>>_q; rep(_,_q){ int x,y; cin>>x>>y; if(x==y){ cout<<0<r)swap(l,r); ans += F.sum(l,r+1); } if(x>=b.size())ans--; if(y>=b.size())ans--; cout<