import macros;macro ImportExpand(s:untyped):untyped = parseStmt($s[2]) # source: src/cplib/tmpl/sheep.nim ImportExpand "cplib/tmpl/sheep" <=== "when not declared CPLIB_TMPL_SHEEP:\n const CPLIB_TMPL_SHEEP* = 1\n {.warning[UnusedImport]: off.}\n {.hint[XDeclaredButNotUsed]: off.}\n import algorithm\n import sequtils\n import tables\n import macros\n import math\n import sets\n import strutils\n import strformat\n import sugar\n import heapqueue\n import streams\n import deques\n import bitops\n import std/lenientops\n import options\n #入力系\n proc scanf(formatstr: cstring){.header: \"\", varargs.}\n proc getchar(): char {.importc: \"getchar_unlocked\", header: \"\", discardable.}\n proc ii(): int {.inline.} = scanf(\"%lld\\n\", addr result)\n proc lii(N: int): seq[int] {.inline.} = newSeqWith(N, ii())\n proc si(): string {.inline.} =\n result = \"\"\n var c: char\n while true:\n c = getchar()\n if c == ' ' or c == '\\n' or c == '\\255':\n break\n result &= c\n #chmin,chmax\n template `max=`(x, y) = x = max(x, y)\n template `min=`(x, y) = x = min(x, y)\n proc chmin[T](x: var T, y: T):bool=\n if x > y:\n x = y\n return true\n return false\n proc chmax[T](x: var T, y: T):bool=\n if x < y:\n x = y\n return true\n return false\n #bit演算\n proc `%`*(x: int, y: int): int =\n result = x mod y\n if y > 0 and result < 0: result += y\n if y < 0 and result > 0: result += y\n proc `//`*(x: int, y: int): int{.inline.} =\n result = x div y\n if y > 0 and result * y > x: result -= 1\n if y < 0 and result * y < x: result -= 1\n proc `%=`(x: var int, y: int): void = x = x%y\n proc `//=`(x: var int, y: int): void = x = x//y\n proc `**`(x: int, y: int): int = x^y\n proc `**=`(x: var int, y: int): void = x = x^y\n proc `^`(x: int, y: int): int = x xor y\n proc `|`(x: int, y: int): int = x or y\n proc `&`(x: int, y: int): int = x and y\n proc `>>`(x: int, y: int): int = x shr y\n proc `<<`(x: int, y: int): int = x shl y\n proc `~`(x: int): int = not x\n proc `^=`(x: var int, y: int): void = x = x ^ y\n proc `&=`(x: var int, y: int): void = x = x & y\n proc `|=`(x: var int, y: int): void = x = x | y\n proc `>>=`(x: var int, y: int): void = x = x >> y\n proc `<<=`(x: var int, y: int): void = x = x << y\n proc `[]`(x: int, n: int): bool = (x and (1 shl n)) != 0\n #便利な変換\n proc `!`(x: char, a = '0'): int = int(x)-int(a)\n #定数\n when not declared CPLIB_UTILS_CONSTANTS:\n const CPLIB_UTILS_CONSTANTS* = 1\n const INF32*: int32 = 1001000027.int32\n const INF64*: int = int(3300300300300300491)\n \n const INF = INF64\n #converter\n\n #range\n iterator range(start: int, ends: int, step: int): int =\n var i = start\n if step < 0:\n while i > ends:\n yield i\n i += step\n elif step > 0:\n while i < ends:\n yield i\n i += step\n iterator range(ends: int): int = (for i in 0..\n #endif\n \n # @param n `0 <= n`\n # @return minimum non-negative `x` s.t. `n <= 2**x`\n proc ceil_pow2*(n:SomeInteger):int =\n var x = 0\n while (1.uint shl x) < n.uint: x.inc\n return x\n # @param n `1 <= n`\n # @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`\n proc bsf*(n:SomeInteger):int =\n return countTrailingZeroBits(n)\n \n when not declared ATCODER_RANGEUTILS_HPP:\n const ATCODER_RANGEUTILS_HPP* = 1\n type RangeType* = Slice[int] | HSlice[int, BackwardsIndex] | Slice[BackwardsIndex]\n type IndexType* = int | BackwardsIndex\n template halfOpenEndpoints*(p:Slice[int]):(int,int) = (p.a, p.b + 1)\n template `^^`*(s, i: untyped): untyped =\n (when i is BackwardsIndex: s.len - int(i) else: int(i))\n template halfOpenEndpoints*[T](s:T, p:RangeType):(int,int) =\n (s^^p.a, s^^p.b + 1)\n \n import std/sequtils\n import std/algorithm\n {.push inline.}\n type LazySegTree*[S,F;p:static[tuple]] = object\n len*, size*, log*:int\n d*:seq[S]\n lz*:seq[F]\n\n template calc_op*[ST:LazySegTree](self:ST or typedesc[ST], a, b:ST.S):auto =\n block:\n let u = ST.p.op(a, b)\n u\n template calc_e*[ST:LazySegTree](self:ST or typedesc[ST]):auto =\n block:\n let u = ST.p.e()\n u\n template calc_mapping*[ST:LazySegTree](self:ST or typedesc[ST], a:ST.F, b:ST.S):auto =\n block:\n let u = ST.p.mapping(a, b)\n u\n template calc_composition*[ST:LazySegTree](self:ST or typedesc[ST], a, b:ST.F):auto =\n block:\n # こう書かないとバグる事象を検出\n let u = ST.p.composition(a, b)\n u\n template calc_id*[ST:LazySegTree](self:ST or typedesc[ST]):auto =\n block:\n let u = ST.p.id()\n u\n\n proc update[ST:LazySegTree](self:var ST, k:int) =\n self.d[k] = ST.calc_op(self.d[2 * k], self.d[2 * k + 1])\n proc all_apply*[ST:LazySegTree](self:var ST, k:int, f:ST.F) =\n self.d[k] = ST.calc_mapping(f, self.d[k])\n if k < self.size:\n self.lz[k] = ST.calc_composition(f, self.lz[k])\n proc all_apply*[ST:LazySegTree](self:var ST, f:ST.F) =\n self.all_apply(1, f)\n proc push*[ST:LazySegTree](self: var ST, k:int) =\n self.all_apply(2 * k, self.lz[k])\n self.all_apply(2 * k + 1, self.lz[k])\n self.lz[k] = ST.calc_id()\n\n proc init[ST:LazySegTree](self:var ST, v:seq[ST.S]) =\n let\n n = v.len\n log = ceil_pow2(n)\n size = 1 shl log\n (self.len, self.size, self.log) = (n, size, log)\n if self.d.len < 2 * size:\n self.d = newSeqWith(2 * size, ST.calc_e())\n else:\n self.d.fill(0, 2 * size - 1, ST.calc_e())\n for i in 0.. int max_right(int l) {\n# return max_right(l, [](S x) { return g(x); });\n# }\n proc max_right*[ST:LazySegTree](self:var ST, l:IndexType, g:proc(s:ST.S):bool):int =\n var l = self^^l\n assert l in 0..self.len\n assert g(ST.calc_e())\n if l == self.len: return self.len\n l += self.size\n for i in countdown(self.log, 1): self.push(l shr i)\n var sm = ST.calc_e()\n while true:\n while l mod 2 == 0: l = l shr 1\n if not g(ST.calc_op(sm, self.d[l])):\n while l < self.size:\n self.push(l)\n l = (2 * l)\n if g(ST.calc_op(sm, self.d[l])):\n sm = ST.calc_op(sm, self.d[l])\n l.inc\n return l - self.size\n sm = ST.calc_op(sm, self.d[l])\n l.inc\n if not((l and -l) != l): break\n return self.len\n\n# template int min_left(int r) {\n# return min_left(r, [](S x) { return g(x); });\n# }\n proc min_left*[ST:LazySegTree](self: var ST, r:IndexType, g:proc(s:ST.S):bool):int =\n var r = self^^r\n assert r in 0..self.len\n assert(g(ST.calc_e()))\n if r == 0: return 0\n r += self.size\n for i in countdown(self.log, 1): self.push((r - 1) shr i)\n var sm = ST.calc_e()\n while true:\n r.dec\n while r > 1 and r mod 2 == 1: r = r shr 1\n if not g(ST.calc_op(self.d[r], sm)):\n while r < self.size:\n self.push(r)\n r = (2 * r + 1)\n if g(ST.calc_op(self.d[r], sm)):\n sm = ST.calc_op(self.d[r], sm)\n r.dec\n return r + 1 - self.size\n sm = ST.calc_op(self.d[r], sm)\n if not ((r and -r) != r): break\n return 0\n {.pop.}\n" proc initRangeAddRangeMinSegtree[T](v:seq[T]):auto= type S = (T,int) type F = T proc op(a,b:S):S= if a[0] == b[0]: return (a[0],a[1]+b[1]) elif a[0] < b[0]: return a else: return b proc e():S=(INF,1) proc mapping(f:F,x:S):S=(x[0]+f,x[1]) proc composition(f,g:F):F=f+g proc id():F=0 return LazySegTree.getType(S, F, op, e, mapping, composition, id).init(v.mapit((it,1))) var N = ii() var Q = ii() var st = initRangeAddRangeMinSegtree(newseqwith(N-1,0)) var querys: seq[(int,int)] for i in range(Q): var T = ii() if T == 1: var L,R = ii()-1 querys.add((L,R)) st.apply(L..