def main(): import sys input = sys.stdin.read().split() T = int(input[0]) cases = input[1:T+1] GOOD = 'good' PROBLEM = 'problem' len_good = len(GOOD) len_problem = len(PROBLEM) for s in cases: n = len(s) # Precompute cost_g_part and cost_p_part cost_g_part = [] for i in range(n - len_good + 1): cost = 0 for j in range(len_good): if s[i + j] != GOOD[j]: cost += 1 cost_g_part.append(cost) cost_p_part = [] for i in range(n - len_problem + 1): cost = 0 for j in range(len_problem): if s[i + j] != PROBLEM[j]: cost += 1 cost_p_part.append(cost) # Precompute good_positions and problem_positions in original string good_positions = [] for i in range(n - len_good + 1): if s[i:i+len_good] == GOOD: good_positions.append(i) problem_positions = [] for i in range(n - len_problem + 1): if s[i:i+len_problem] == PROBLEM: problem_positions.append(i) # Precompute count_good_break for each i count_good_break = [0] * n for i in range(n): cnt = 0 for k in good_positions: if k < i and (k + len_good - 1) < i: cnt += 1 count_good_break[i] = cnt # Precompute count_problem_break for each j count_problem_break = [0] * n for j in range(n): cnt = 0 for k in problem_positions: if k < j and (k + len_problem - 1) < j: cnt += 1 count_problem_break[j] = cnt # Iterate all possible i and j to find the minimal cost min_cost = float('inf') max_good_i = n - len_good for i in range(max_good_i + 1): cost_g = cost_g_part[i] # j must be >= i + 4 and valid (j + 7 -1 <= n-1) min_j = i + 4 max_j = n - len_problem if min_j > max_j: continue for j in range(min_j, max_j + 1): cost_p = cost_p_part[j] total = cost_g + cost_p + count_good_break[i] + count_problem_break[j] if total < min_cost: min_cost = total print(min_cost) if __name__ == '__main__': main()