MOD = 998244353 def solve(): N, M = map(int, input().split()) max_m = min(N + 1, M + 1) max_m = min(max_m, N + 1) # m cannot exceed N+1 due to array length constraints # Precompute factorial and inverse factorial up to max_m max_fact = max_m fact = [1] * (max_fact + 1) for i in range(1, max_fact + 1): fact[i] = fact[i-1] * i % MOD inv_fact = [1] * (max_fact + 1) inv_fact[max_fact] = pow(fact[max_fact], MOD-2, MOD) for i in range(max_fact - 1, -1, -1): inv_fact[i] = inv_fact[i + 1] * (i + 1) % MOD def comb(m, k): if k < 0 or k > m: return 0 return fact[m] * inv_fact[k] % MOD * inv_fact[m - k] % MOD total = 0 for m in range(1, max_m + 1): if (m - 1) > M: continue sum_term = 0 for k in range(0, m + 1): # Calculate sign: (-1)^(m-k) sign = -1 if (m - k) % 2 else 1 c = comb(m, k) base = 2 * M - m + 1 + k base_mod = base % MOD pow_term = pow(base_mod, N, MOD) term = sign * c * pow_term term %= MOD # Ensure term is within MOD sum_term = (sum_term + term) % MOD contribution = m * sum_term % MOD total = (total + contribution) % MOD print(total % MOD) solve()