mod = 998244353 def matrix_determinant(A, mod = 998244353): n = len(A) B = [[A[i][j] for j in range(n)] for i in range(n)] res = 1 for i in range(n): if B[i][i] == 0: for j in range(i + 1, n): if B[i][j] != 0: for k in range(i, n): B[i][k], B[j][k] = B[j][k], B[i][k] res = mod - res break if B[i][i] == 0: return 0 a = B[i][i] res = res * a % mod a_inv = pow(a, -1, mod) for j in range(i, n): B[i][j] = B[i][j] * a_inv % mod for j in range(i + 1, n): a = B[j][i] for k in range(i, n): B[j][k] = (B[j][k] - B[i][k] * a) % mod return res def count_spanning_tree(G, r = 0, mod = 998244353): N = len(G) A = [[0 for j in range(N - 1)] for i in range(N - 1)] for u in range(N): i = u - int(u > r) for v in range(N): if v == r: continue j = v - int(v > r) A[j][j] += G[u][v] if u != r: A[j][i] -= G[u][v] return matrix_determinant(A, mod) K = int(input()) C = [0 for _ in range(K)] CC = [0 for _ in range(K)] for i in range(K): N, M = map(int, input().split()) G = [[0 for _ in range(N)] for _ in range(N)] GG = [[0 for _ in range(N)] for _ in range(N)] for _ in range(M): A, B = map(int, input().split()) A -= 1 B -= 1 G[A][B] += 1 G[B][A] += 1 GG[A][B] += 1 GG[B][A] += 1 GG[0][1] += 1 GG[1][0] += 1 C[i] = count_spanning_tree(G) CC[i] = (count_spanning_tree(GG) - C[i]) % mod ans = 0 for k in range(K): c = C[k] for i in range(K): if i == k: continue c = c * (2 * C[i] + CC[i]) % mod ans = (ans + c) % mod print(ans)