#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using Int = long long; template ostream &operator<<(ostream &os, const pair &a) { return os << "(" << a.first << ", " << a.second << ")"; }; template ostream &operator<<(ostream &os, const vector &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; } template void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; } template bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; } template bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; } #define COLOR(s) ("\x1b[" s "m") //////////////////////////////////////////////////////////////////////////////// template struct ModInt { static constexpr unsigned M = M_; unsigned x; constexpr ModInt() : x(0U) {} constexpr ModInt(unsigned x_) : x(x_ % M) {} constexpr ModInt(unsigned long long x_) : x(x_ % M) {} constexpr ModInt(int x_) : x(((x_ %= static_cast(M)) < 0) ? (x_ + static_cast(M)) : x_) {} constexpr ModInt(long long x_) : x(((x_ %= static_cast(M)) < 0) ? (x_ + static_cast(M)) : x_) {} ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; } ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; } ModInt &operator*=(const ModInt &a) { x = (static_cast(x) * a.x) % M; return *this; } ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); } ModInt pow(long long e) const { if (e < 0) return inv().pow(-e); ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b; } ModInt inv() const { unsigned a = M, b = x; int y = 0, z = 1; for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast(q) * z; y = z; z = w; } assert(a == 1U); return ModInt(y); } ModInt operator+() const { return *this; } ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; } ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); } ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); } ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); } ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); } template friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); } template friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); } template friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); } template friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); } explicit operator bool() const { return x; } bool operator==(const ModInt &a) const { return (x == a.x); } bool operator!=(const ModInt &a) const { return (x != a.x); } friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; } }; //////////////////////////////////////////////////////////////////////////////// constexpr unsigned MO = 998244353; using Mint = ModInt; constexpr int LIM = 1'000'010; Int N, sqrtN; int lpf[LIM]; int main() { for (; ~scanf("%lld", &N); ) { sqrtN = floor(sqrt((long double)N)); for (int p = 2; p <= sqrtN; ++p) lpf[p] = p; for (int p = 2; p <= sqrtN; ++p) if (lpf[p] == p) { for (int n = p; n <= sqrtN; n += p) chmin(lpf[n], p); } const Int off = N - sqrtN; vector sieve(sqrtN + 1); for (int i = 0; i <= sqrtN; ++i) sieve[i] = off + i; vector>> pess(sqrtN + 1); for (int p = 2; p <= sqrtN; ++p) if (lpf[p] == p) { for (Int n = max((off + p - 1) / p, 1LL) * p; n <= N; n += p) { const int i = n - off; int e = 0; do { ++e; sieve[i] /= p; } while (sieve[i] % p == 0); pess[i].emplace_back(p, e); } } for (int i = 0; i <= sqrtN; ++i) if (sieve[i] > 1) { pess[i].emplace_back(sieve[i], 1); } // if(N<=100)cerr<= 1) { // B > q >= r for (Int q = 1; q <= sqrtN; ++q) { const Int b = lim / q; ans += Mint(max(b - q, 0LL)) * (Mint(q) * Mint(q+1) / 2); } // r < B <= q for (Int b = 1; b <= sqrtN; ++b) { const Int q = lim / b; ans += Mint(max(q - b + 1, 0LL)) * (Mint(b-1) * Mint(b) / 2); } } cerr<<"lim = "<