mod = 998244353 n = 10 ** 6 inv = [1 for j in range(n + 1)] for a in range(2, n + 1): inv[a] = (mod - inv[mod % a]) * (mod // a) % mod def mod_inv(a, mod = 998244353): if mod == 1: return 0 a %= mod b, s, t = mod, 1, 0 while True: if a == 1: return s t -= (b // a) * s b %= a if b == 1: return t + mod s -= (a // b) * t a %= b fact = [1 for i in range(n + 1)] for i in range(1, n + 1): fact[i] = fact[i - 1] * i % mod fact_inv = [1 for i in range(n + 1)] fact_inv[-1] = mod_inv(fact[-1], mod) for i in range(n, 0, -1): fact_inv[i - 1] = fact_inv[i] * i % mod def binom(n, r): if n < r or n < 0 or r < 0: return 0 res = fact_inv[n - r] * fact_inv[r] % mod res = res * fact[n] % mod return res N = int(input()) S = input() if N == 2: print(2) exit() f = 1 if S[1] == ')': f = 0 ans = 0 if f: n = N // 2 for i in range(n + 1): ans = (ans + binom(n, i) * binom(n, i)) % mod else: ans = pow(2, N // 2, mod) print(ans)