class FenwickTree: def __init__(self, size): self.n = size self.tree = [0] * (self.n + 2) # 1-based indexing def update(self, idx, delta): while idx <= self.n: self.tree[idx] += delta idx += idx & -idx def query(self, idx): res = 0 while idx > 0: res += self.tree[idx] idx -= idx & -idx return res def main(): import sys input = sys.stdin.read().split() N = int(input[0]) p = list(map(int, input[1:N+1])) # Precompute factorials up to N fact = [1] * (N + 1) for i in range(1, N + 1): fact[i] = fact[i - 1] * i # Initialize Fenwick Tree with all elements present (1) ft = FenwickTree(N) for i in range(1, N + 1): ft.update(i, 1) ans = 0 for i in range(N): current = p[i] # Number of elements less than current that are present count = ft.query(current - 1) ans += count * fact[N - i - 1] # Remove current element ft.update(current, -1) print(ans + 1) if __name__ == "__main__": main()