import math def sieve(n): sieve = [True] * (n + 1) sieve[0] = sieve[1] = False for i in range(2, int(math.isqrt(n)) + 1): if sieve[i]: sieve[i*i : n+1 : i] = [False] * len(sieve[i*i : n+1 : i]) primes = [i for i, is_prime in enumerate(sieve) if is_prime] return primes def is_prime(n): if n < 2: return False for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]: if n % p == 0: return n == p d = n - 1 s = 0 while d % 2 == 0: d //= 2 s += 1 for a in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]: if a >= n: continue x = pow(a, d, n) if x == 1 or x == n - 1: continue for _ in range(s - 1): x = pow(x, 2, n) if x == n - 1: break else: return False return True L, R = map(int, input().split()) primes = sieve(10**6) is_square_free = [True] * (R - L + 1) for p in primes: p_squared = p * p if p_squared > R: continue start = ((L + p_squared - 1) // p_squared) * p_squared if start > R: continue for multiple in range(start, R + 1, p_squared): idx = multiple - L is_square_free[idx] = False count = 0 for x in range(L, R + 1): idx = x - L if not is_square_free[idx]: continue s = math.isqrt(x) if s * s == x: if is_prime(s): is_square_free[idx] = False if is_square_free[idx]: count += 1 print(count)