import heapq import bisect import math def main(): import sys input = sys.stdin.read().split() ptr = 0 N = int(input[ptr]) M = int(input[ptr+1]) K = int(input[ptr+2]) ptr += 3 X = int(input[ptr]) Y = int(input[ptr+1]) ptr += 2 coords = [] for _ in range(N): p = int(input[ptr]) q = int(input[ptr+1]) coords.append((p, q)) ptr += 2 # Build adjacency list adj = [[] for _ in range(N + 1)] # 1-based indexing for _ in range(M): P = int(input[ptr]) Q = int(input[ptr+1]) ptr += 2 dx = coords[P-1][0] - coords[Q-1][0] dy = coords[P-1][1] - coords[Q-1][1] dist = math.hypot(dx, dy) adj[P].append((Q, dist)) adj[Q].append((P, dist)) # Priority queue: (current_sum, current_node, visited_tuple) heap = [] initial_visited = tuple(sorted([X])) heapq.heappush(heap, (0.0, X, initial_visited)) result = [] while heap and len(result) < K: current_sum, current_node, visited = heapq.heappop(heap) if current_node == Y: result.append(current_sum) continue # Generate neighbors for (neighbor, dist) in adj[current_node]: # Check if neighbor is in visited using binary search idx = bisect.bisect_left(visited, neighbor) if idx < len(visited) and visited[idx] == neighbor: continue # already visited # Create new visited tuple new_visited = list(visited) new_visited.insert(idx, neighbor) new_visited = tuple(new_visited) new_sum = current_sum + dist heapq.heappush(heap, (new_sum, neighbor, new_visited)) # Output the results with padding for i in range(K): if i < len(result): print("{0:.6f}".format(result[i])) else: print(-1) if __name__ == '__main__': main()