import math import heapq def main(): n = int(input()) planets = [] for _ in range(n): x, y, t = map(int, input().split()) planets.append((x, y, t)) # Precompute radii for each planet r = [] for x, y, t in planets: r_sq = x * x + y * y r_i = math.sqrt(r_sq) r.append(r_i) # Precompute adjacency list with min_dist_sq for each pair adj = [[] for _ in range(n)] for i in range(n): xi, yi, ti = planets[i] ri = r[i] for j in range(n): if i == j: continue xj, yj, tj = planets[j] rj = r[j] if ti != tj: min_dist_sq = (ri - rj) ** 2 else: dx = xi - xj dy = yi - yj min_dist_sq = dx * dx + dy * dy adj[i].append((j, min_dist_sq)) # Dijkstra's algorithm to find the minimal maximum edge weight INF = float('inf') dist = [INF] * n dist[0] = 0.0 heap = [] heapq.heappush(heap, (0.0, 0)) while heap: current_max, u = heapq.heappop(heap) if u == n - 1: print(math.ceil(current_max)) return if current_max > dist[u]: continue for v, weight in adj[u]: new_max = max(current_max, weight) if new_max < dist[v]: dist[v] = new_max heapq.heappush(heap, (new_max, v)) # If no path found (should not happen as per problem constraints) print(-1) if __name__ == "__main__": main()