MOD = 998244353 max_n = 2 * 10**5 + 10 # Precompute factorials and inverse factorials modulo MOD fact = [1] * (max_n) for i in range(1, max_n): fact[i] = fact[i-1] * i % MOD inv_fact = [1] * (max_n) inv_fact[max_n-1] = pow(fact[max_n-1], MOD-2, MOD) for i in range(max_n-2, -1, -1): inv_fact[i] = inv_fact[i+1] * (i+1) % MOD n = int(input()) for i in range(n + 1): if i == 0: print(0) else: # Calculate combination C(n-1, i-1) k = i - 1 if k < 0 or k > n - 1: comb = 0 else: comb = fact[n-1] * inv_fact[k] % MOD comb = comb * inv_fact[(n-1) - k] % MOD # Calculate inv_fact[N - i] ni = n - i if ni < 0: inv = 0 else: inv = inv_fact[ni] # Determine the sign exponent = ni if exponent % 2 == 0: sign = 1 else: sign = MOD - 1 # Compute the result res = comb * inv % MOD res = res * sign % MOD print(res)