import sys import math def sieve(n): sieve = [True] * (n + 1) sieve[0] = sieve[1] = False for i in range(2, int(math.isqrt(n)) + 1): if sieve[i]: sieve[i*i : n+1 : i] = [False] * len(sieve[i*i : n+1 : i]) primes = [i for i, is_p in enumerate(sieve) if is_p] return primes primes = sieve(10**6) def is_prime(n): if n < 2: return False for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]: if n % p == 0: return n == p d = n - 1 s = 0 while d % 2 == 0: d //= 2 s += 1 for a in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]: if a >= n: continue x = pow(a, d, n) if x == 1 or x == n - 1: continue for _ in range(s - 1): x = pow(x, 2, n) if x == n - 1: break else: return False return True def count_square_free(L, R): size = R - L + 1 is_square_free = [True] * size # Mark multiples of squares of primes up to 1e6 for p in primes: p_sq = p * p if p_sq > R: continue start = ((L + p_sq - 1) // p_sq) * p_sq for m in range(start, R + 1, p_sq): idx = m - L if 0 <= idx < size: is_square_free[idx] = False # Check for squares of primes larger than 1e6 for i in range(size): if not is_square_free[i]: continue x = L + i sqrt_x = math.isqrt(x) if sqrt_x * sqrt_x == x and is_prime(sqrt_x): is_square_free[i] = False return sum(is_square_free) L, R = map(int, sys.stdin.readline().split()) print(count_square_free(L, R))