import sys from collections import deque MOD = 998244353 def main(): input = sys.stdin.read().split() ptr = 0 N = int(input[ptr]) ptr += 1 Q = list(map(int, input[ptr:ptr+N])) ptr += N edges = [[] for _ in range(N+1)] for _ in range(N-1): u = int(input[ptr]) v = int(input[ptr+1]) ptr += 2 edges[u].append(v) edges[v].append(u) # Precompute factorial and k0 = (N!)^2 mod MOD fact = [1] * (N+1) for i in range(1, N+1): fact[i] = fact[i-1] * i % MOD k0 = fact[N] * fact[N] % MOD # Precompute inv_sq[d] = 1/(d^2) mod MOD for d from 1 to N+1 max_d = N inv = [1] * (max_d + 2) inv[1] = 1 for i in range(2, max_d + 2): inv[i] = MOD - MOD // i * inv[MOD % i] % MOD inv_sq = [1] * (max_d + 2) for d in range(1, max_d + 2): inv_sq[d] = inv[d] * inv[d] % MOD # For each vertex p, compute sum of Q_i / (d(p,i)+1)^2 E = [0] * (N+1) # 1-based # Since BFS for each node is O(N^2), which is not feasible, this approach will not work for large N. # The following code is a placeholder to illustrate the intended logic but will not pass due to time constraints. for p in range(1, N+1): dist = [-1] * (N+1) q = deque() q.append(p) dist[p] = 0 while q: u = q.popleft() for v in edges[u]: if dist[v] == -1: dist[v] = dist[u] + 1 q.append(v) total = 0 for i in range(1, N+1): d = dist[i] total = (total + Q[i-1] * inv_sq[d+1]) % MOD E[p] = total * k0 % MOD for p in range(1, N+1): print(E[p]) if __name__ == '__main__': main()