# this code was generated by grok 3 beta (x.com) def inverse_permutation(perm): # 順列の逆順列を計算(1-based) n = len(perm) inv = [0] * n for i in range(n): inv[perm[i] - 1] = i + 1 return inv def apply_row_perm(matrix, perm): # 行を指定された順列に基づいて並び替える n = len(matrix) new_matrix = [None] * n for i in range(n): new_matrix[i] = matrix[perm[i] - 1][:] # 行 perm[i] を i 番目に return new_matrix def apply_col_perm(matrix, perm): # 列を指定された順列に基づいて並び替える n = len(matrix) new_matrix = [[0] * n for _ in range(n)] for j in range(n): target_col = perm[j] - 1 # 列 perm[j] を j 番目に for i in range(n): new_matrix[i][j] = matrix[i][target_col] return new_matrix def check_equal(matrix1, matrix2): # 2つの行列が等しいか確認 return all(row1 == row2 for row1, row2 in zip(matrix1, matrix2)) def solve(N, K, A, B): # 反復深さ優先探索で B から A への操作列を探索 from collections import deque stack = [(B, [])] # (現在の行列, 操作列) limit = 1000 # 操作回数の上限 visited = set() # 訪れた行列のハッシュ while stack: current, operations = stack.pop() if len(operations) > limit: continue if check_equal(current, A): return operations # 行列をハッシュ化(訪問済みチェック) matrix_hash = tuple(tuple(row) for row in current) if matrix_hash in visited: continue visited.add(matrix_hash) # 各行を試す for i in range(N): perm = current[i] inv_perm = inverse_permutation(perm) # 逆順列で並び替え new_matrix = apply_row_perm(current, inv_perm) new_ops = operations + [("R", i + 1)] stack.append((new_matrix, new_ops)) # 各列を試す for j in range(N): perm = [current[i][j] for i in range(N)] inv_perm = inverse_permutation(perm) # 逆順列で並び替え new_matrix = apply_col_perm(current, inv_perm) new_ops = operations + [("C", j + 1)] stack.append((new_matrix, new_ops)) return [] # 解が見つからない場合(問題保証により発生しない) # 入力処理 N, K = map(int, input().split()) A = [list(map(int, input().split())) for _ in range(N)] B = [list(map(int, input().split())) for _ in range(N)] # 解を求める ops = solve(N, K, A, B) # 出力 print(len(ops)) for op_type, pos in ops: print(f"{op_type} {pos}")