#line 1 "main.cpp" #pragma region Macros #include using namespace std; // input output utils namespace siro53_io { // https://maspypy.github.io/library/other/io_old.hpp struct has_val_impl { template static auto check(T &&x) -> decltype(x.val(), std::true_type{}); template static auto check(...) -> std::false_type; }; template class has_val : public decltype(has_val_impl::check(std::declval())) { }; // debug template ::value, int> = 0> void dump(const T t) { cerr << t; } template ::value, int> = 0> void dump(const T t) { cerr << t; } template ::value>::type * = nullptr> void dump(const T &t) { cerr << t.val(); } void dump(__int128_t n) { if(n == 0) { cerr << '0'; return; } else if(n < 0) { cerr << '-'; n = -n; } string s; while(n > 0) { s += (char)('0' + n % 10); n /= 10; } reverse(s.begin(), s.end()); cerr << s; } void dump(const string &s) { cerr << s; } void dump(const char *s) { int n = (int)strlen(s); for(int i = 0; i < n; i++) cerr << s[i]; } template void dump(const pair &p) { cerr << '('; dump(p.first); cerr << ','; dump(p.second); cerr << ')'; } template void dump(const vector &v) { cerr << '{'; for(int i = 0; i < (int)v.size(); i++) { dump(v[i]); if(i < (int)v.size() - 1) cerr << ','; } cerr << '}'; } template void dump(const set &s) { cerr << '{'; for(auto it = s.begin(); it != s.end(); it++) { dump(*it); if(next(it) != s.end()) cerr << ','; } cerr << '}'; } template void dump(const map &mp) { cerr << '{'; for(auto it = mp.begin(); it != mp.end(); it++) { dump(*it); if(next(it) != mp.end()) cerr << ','; } cerr << '}'; } template void dump(const unordered_map &mp) { cerr << '{'; for(auto it = mp.begin(); it != mp.end(); it++) { dump(*it); if(next(it) != mp.end()) cerr << ','; } cerr << '}'; } template void dump(const deque &v) { cerr << '{'; for(int i = 0; i < (int)v.size(); i++) { dump(v[i]); if(i < (int)v.size() - 1) cerr << ','; } cerr << '}'; } template void dump(queue q) { cerr << '{'; while(!q.empty()) { dump(q.front()); if((int)q.size() > 1) cerr << ','; q.pop(); } cerr << '}'; } void debug_print() { cerr << endl; } template void debug_print(const Head &h, const Tail &...t) { dump(h); if(sizeof...(Tail)) dump(' '); debug_print(t...); } // print template ::value, int> = 0> void print_single(const T t) { cout << t; } template ::value, int> = 0> void print_single(const T t) { cout << t; } template ::value>::type * = nullptr> void print_single(const T t) { cout << t.val(); } void print_single(__int128_t n) { if(n == 0) { cout << '0'; return; } else if(n < 0) { cout << '-'; n = -n; } string s; while(n > 0) { s += (char)('0' + n % 10); n /= 10; } reverse(s.begin(), s.end()); cout << s; } void print_single(const string &s) { cout << s; } void print_single(const char *s) { int n = (int)strlen(s); for(int i = 0; i < n; i++) cout << s[i]; } template void print_single(const pair &p) { print_single(p.first); cout << ' '; print_single(p.second); } template void print_single(const vector &v) { for(int i = 0; i < (int)v.size(); i++) { print_single(v[i]); if(i < (int)v.size() - 1) cout << ' '; } } template void print_single(const set &s) { for(auto it = s.begin(); it != s.end(); it++) { print_single(*it); if(next(it) != s.end()) cout << ' '; } } template void print_single(const deque &v) { for(int i = 0; i < (int)v.size(); i++) { print_single(v[i]); if(i < (int)v.size() - 1) cout << ' '; } } template void print_single(queue q) { while(!q.empty()) { print_single(q.front()); if((int)q.size() > 1) cout << ' '; q.pop(); } } void print() { cout << '\n'; } template void print(const Head &h, const Tail &...t) { print_single(h); if(sizeof...(Tail)) print_single(' '); print(t...); } // input template ::value, int> = 0> void input_single(T &t) { cin >> t; } template ::value, int> = 0> void input_single(T &t) { cin >> t; } template ::value>::type * = nullptr> void input_single(T &t) { cin >> t; } void input_single(__int128_t &n) { string s; cin >> s; if(s == "0") { n = 0; return; } bool is_minus = false; if(s[0] == '-') { s = s.substr(1); is_minus = true; } n = 0; for(int i = 0; i < (int)s.size(); i++) n = n * 10 + (int)(s[i] - '0'); if(is_minus) n = -n; } void input_single(string &s) { cin >> s; } template void input_single(pair &p) { input_single(p.first); input_single(p.second); } template void input_single(vector &v) { for(auto &e : v) input_single(e); } void input() {} template void input(Head &h, Tail &...t) { input_single(h); input(t...); } }; // namespace siro53_io #ifdef DEBUG #define debug(...) \ cerr << __LINE__ << " [" << #__VA_ARGS__ << "]: ", debug_print(__VA_ARGS__) #else #define debug(...) (void(0)) #endif // io setup struct Setup { Setup() { cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(15); } } __Setup; using namespace siro53_io; // types using ll = long long; using i128 = __int128_t; // input macros #define INT(...) \ int __VA_ARGS__; \ input(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ input(__VA_ARGS__) #define STRING(...) \ string __VA_ARGS__; \ input(__VA_ARGS__) #define CHAR(...) \ char __VA_ARGS__; \ input(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ input(__VA_ARGS__) #define LD(...) \ long double __VA_ARGS__; \ input(__VA_ARGS__) #define UINT(...) \ unsigned int __VA_ARGS__; \ input(__VA_ARGS__) #define ULL(...) \ unsigned long long __VA_ARGS__; \ input(__VA_ARGS__) #define VEC(name, type, len) \ vector name(len); \ input(name); #define VEC2(name, type, len1, len2) \ vector name(len1, vector(len2)); \ input(name); // other macros // https://trap.jp/post/1224/ #define OVERLOAD3(_1, _2, _3, name, ...) name #define ALL(v) (v).begin(), (v).end() #define RALL(v) (v).rbegin(), (v).rend() #define REP1(i, n) for(int i = 0; i < int(n); i++) #define REP2(i, a, b) for(int i = (a); i < int(b); i++) #define REP(...) OVERLOAD3(__VA_ARGS__, REP2, REP1)(__VA_ARGS__) #define SORT(v) sort(ALL(v)) #define RSORT(v) sort(RALL(v)) #define UNIQUE(v) \ sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end()), v.shrink_to_fit() #define REV(v) reverse(ALL(v)) #define SZ(v) ((int)(v).size()) #define MIN(v) (*min_element(ALL(v))) #define MAX(v) (*max_element(ALL(v))) // util const const int INF = 1 << 30; const ll LLINF = 1LL << 60; constexpr int MOD = 1000000007; constexpr int MOD2 = 998244353; const int dx[4] = {1, 0, -1, 0}; const int dy[4] = {0, 1, 0, -1}; // util functions void Case(int i) { cout << "Case #" << i << ": "; } int popcnt(int x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } template inline bool chmax(T &a, T b) { return (a < b ? a = b, true : false); } template inline bool chmin(T &a, T b) { return (a > b ? a = b, true : false); } template auto make_vector_impl(vector& sizes, const T &e) { if constexpr(dim == 1) { return vector(sizes[0], e); } else { int n = sizes[dim - 1]; sizes.pop_back(); return vector(n, make_vector_impl(sizes, e)); } } template auto make_vector(const int (&sizes)[dim], const T &e = T()) { vector s(dim); for(int i = 0; i < dim; i++) s[i] = sizes[dim - i - 1]; return make_vector_impl(s, e); } vector iota_gen(int n, int start = 0) { vector ord(n); iota(ord.begin(), ord.end(), start); return ord; } template vector ord_sort(const vector& v, bool greater = false) { auto ord = iota_gen((int)v.size()); sort(ALL(ord), [&](int i, int j) { if(greater) return v[i] > v[j]; return v[i] < v[j]; }); return ord; } #pragma endregion Macros #include #include #include #include #ifdef _MSC_VER #include #endif #if __cplusplus >= 202002L #include #endif namespace atcoder { namespace internal { #if __cplusplus >= 202002L using std::bit_ceil; #else unsigned int bit_ceil(unsigned int n) { unsigned int x = 1; while (x < (unsigned int)(n)) x *= 2; return x; } #endif int countr_zero(unsigned int n) { #ifdef _MSC_VER unsigned long index; _BitScanForward(&index, n); return index; #else return __builtin_ctz(n); #endif } constexpr int countr_zero_constexpr(unsigned int n) { int x = 0; while (!(n & (1 << x))) x++; return x; } } // namespace internal } // namespace atcoder namespace atcoder { #if __cplusplus >= 201703L template struct lazy_segtree { static_assert(std::is_convertible_v>, "op must work as S(S, S)"); static_assert(std::is_convertible_v>, "e must work as S()"); static_assert( std::is_convertible_v>, "mapping must work as F(F, S)"); static_assert( std::is_convertible_v>, "compostiion must work as F(F, F)"); static_assert(std::is_convertible_v>, "id must work as F()"); #else template struct lazy_segtree { #endif public: lazy_segtree() : lazy_segtree(0) {} explicit lazy_segtree(int n) : lazy_segtree(std::vector(n, e())) {} explicit lazy_segtree(const std::vector& v) : _n(int(v.size())) { size = (int)internal::bit_ceil((unsigned int)(_n)); log = internal::countr_zero((unsigned int)size); d = std::vector(2 * size, e()); lz = std::vector(size, id()); for (int i = 0; i < _n; i++) d[size + i] = v[i]; for (int i = size - 1; i >= 1; i--) { update(i); } } void set(int p, S x) { assert(0 <= p && p < _n); p += size; for (int i = log; i >= 1; i--) push(p >> i); d[p] = x; for (int i = 1; i <= log; i++) update(p >> i); } S get(int p) { assert(0 <= p && p < _n); p += size; for (int i = log; i >= 1; i--) push(p >> i); return d[p]; } S prod(int l, int r) { assert(0 <= l && l <= r && r <= _n); if (l == r) return e(); l += size; r += size; for (int i = log; i >= 1; i--) { if (((l >> i) << i) != l) push(l >> i); if (((r >> i) << i) != r) push((r - 1) >> i); } S sml = e(), smr = e(); while (l < r) { if (l & 1) sml = op(sml, d[l++]); if (r & 1) smr = op(d[--r], smr); l >>= 1; r >>= 1; } return op(sml, smr); } S all_prod() { return d[1]; } void apply(int p, F f) { assert(0 <= p && p < _n); p += size; for (int i = log; i >= 1; i--) push(p >> i); d[p] = mapping(f, d[p]); for (int i = 1; i <= log; i++) update(p >> i); } void apply(int l, int r, F f) { assert(0 <= l && l <= r && r <= _n); if (l == r) return; l += size; r += size; for (int i = log; i >= 1; i--) { if (((l >> i) << i) != l) push(l >> i); if (((r >> i) << i) != r) push((r - 1) >> i); } { int l2 = l, r2 = r; while (l < r) { if (l & 1) all_apply(l++, f); if (r & 1) all_apply(--r, f); l >>= 1; r >>= 1; } l = l2; r = r2; } for (int i = 1; i <= log; i++) { if (((l >> i) << i) != l) update(l >> i); if (((r >> i) << i) != r) update((r - 1) >> i); } } template int max_right(int l) { return max_right(l, [](S x) { return g(x); }); } template int max_right(int l, G g) { assert(0 <= l && l <= _n); assert(g(e())); if (l == _n) return _n; l += size; for (int i = log; i >= 1; i--) push(l >> i); S sm = e(); do { while (l % 2 == 0) l >>= 1; if (!g(op(sm, d[l]))) { while (l < size) { push(l); l = (2 * l); if (g(op(sm, d[l]))) { sm = op(sm, d[l]); l++; } } return l - size; } sm = op(sm, d[l]); l++; } while ((l & -l) != l); return _n; } template int min_left(int r) { return min_left(r, [](S x) { return g(x); }); } template int min_left(int r, G g) { assert(0 <= r && r <= _n); assert(g(e())); if (r == 0) return 0; r += size; for (int i = log; i >= 1; i--) push((r - 1) >> i); S sm = e(); do { r--; while (r > 1 && (r % 2)) r >>= 1; if (!g(op(d[r], sm))) { while (r < size) { push(r); r = (2 * r + 1); if (g(op(d[r], sm))) { sm = op(d[r], sm); r--; } } return r + 1 - size; } sm = op(d[r], sm); } while ((r & -r) != r); return 0; } private: int _n, size, log; std::vector d; std::vector lz; void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); } void all_apply(int k, F f) { d[k] = mapping(f, d[k]); if (k < size) lz[k] = composition(f, lz[k]); } void push(int k) { all_apply(2 * k, lz[k]); all_apply(2 * k + 1, lz[k]); lz[k] = id(); } }; } // namespace atcoder namespace siro53 { using S = ll; using F = ll; S op(S a, S b) { return min(a, b); } S e() { return LLINF; } S mapping(F f, S x) { return min(f, x); } F composition(F f, F g) { return min(f, g); } F id() { return LLINF; } using segtree = atcoder::lazy_segtree; }; using segtree = siro53::segtree; /* c[t] + (t - x) (x <= t) ... 1 c[t] + (x - t) (x > t) ... 2 */ int main() { INT(N, Q); segtree seg1(N), seg2(N); REP(_, Q) { INT(type); if(type == 1) { INT(x); x--; ll ans = x; chmin(ans, seg1.prod(x, N) - x); chmin(ans, seg2.prod(0, x) + x); print(ans); } else { INT(t); LL(c); t--; seg1.set(t, c + t); seg2.set(t, c - t); } } }