// Problem: No.3111 Toll Optimization // Contest: yukicoder // URL: https://yukicoder.me/problems/no/3111 // Memory Limit: 512 MB // Time Limit: 5000 ms // // Powered by CP Editor (https://cpeditor.org) //By: OIer rui_er #include #define rep(x, y, z) for(int x = (y); x <= (z); ++x) #define per(x, y, z) for(int x = (y); x >= (z); --x) #define debug(format...) fprintf(stderr, format) #define fileIO(s) do {freopen(s".in", "r", stdin); freopen(s".out", "w", stdout);} while(false) #define endl '\n' using namespace std; typedef long long ll; mt19937 rnd(std::chrono::duration_cast(std::chrono::system_clock::now().time_since_epoch()).count()); int randint(int L, int R) { uniform_int_distribution dist(L, R); return dist(rnd); } template void chkmin(T& x, T y) {if(y < x) x = y;} template void chkmax(T& x, T y) {if(x < y) x = y;} template inline unsigned int down(unsigned int x) { return x >= mod ? x - mod : x; } template struct Modint { unsigned int x; Modint() = default; Modint(unsigned int x) : x(x) {} friend istream& operator>>(istream& in, Modint& a) {return in >> a.x;} friend ostream& operator<<(ostream& out, Modint a) {return out << a.x;} friend Modint operator+(Modint a, Modint b) {return down(a.x + b.x);} friend Modint operator-(Modint a, Modint b) {return down(a.x - b.x + mod);} friend Modint operator*(Modint a, Modint b) {return 1ULL * a.x * b.x % mod;} friend Modint operator/(Modint a, Modint b) {return a * ~b;} friend Modint operator^(Modint a, int b) {Modint ans = 1; for(; b; b >>= 1, a *= a) if(b & 1) ans *= a; return ans;} friend Modint operator~(Modint a) {return a ^ (mod - 2);} friend Modint operator-(Modint a) {return down(mod - a.x);} friend Modint& operator+=(Modint& a, Modint b) {return a = a + b;} friend Modint& operator-=(Modint& a, Modint b) {return a = a - b;} friend Modint& operator*=(Modint& a, Modint b) {return a = a * b;} friend Modint& operator/=(Modint& a, Modint b) {return a = a / b;} friend Modint& operator^=(Modint& a, int b) {return a = a ^ b;} friend Modint& operator++(Modint& a) {return a += 1;} friend Modint operator++(Modint& a, int) {Modint x = a; a += 1; return x;} friend Modint& operator--(Modint& a) {return a -= 1;} friend Modint operator--(Modint& a, int) {Modint x = a; a -= 1; return x;} friend bool operator==(Modint a, Modint b) {return a.x == b.x;} friend bool operator!=(Modint a, Modint b) {return !(a == b);} }; const ll N = 5e5 + 5, inf = 0x3f3f3f3f3f3f3f3fll; ll n, m, k, ec[N], eu[N], ev[N], dis[N], vis[N]; vector> e[N]; void dijkstra(ll s) { memset(dis, 0x3f, sizeof(dis)); memset(vis, 0, sizeof(vis)); priority_queue> heap; dis[s] = 0; heap.emplace(-dis[s], s); while(!heap.empty()) { ll u = get<1>(heap.top()); heap.pop(); if(vis[u]) continue; vis[u] = 1; for(auto [v, w] : e[u]) { if(dis[v] > dis[u] + w) { dis[v] = dis[u] + w; heap.emplace(-dis[v], v); } } } } int main() { ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); cin >> n >> m >> k; rep(i, 1, m) cin >> ec[i]; rep(i, 1, m) cin >> eu[i] >> ev[i]; rep(t, 0, k) { rep(i, 1, m) { e[n * t + eu[i]].emplace_back(n * t + ev[i], ec[i]); e[n * t + ev[i]].emplace_back(n * t + eu[i], ec[i]); if(t < k) { e[n * t + eu[i]].emplace_back(n * (t + 1) + ev[i], 0); e[n * t + ev[i]].emplace_back(n * (t + 1) + eu[i], 0); } } rep(i, 1, n) { if(t < k) { e[n * t + i].emplace_back(n * (t + 1) + i, 0); } } } dijkstra(n * 0 + 1); cout << (dis[n * k + n] == +inf ? -1LL : dis[n * k + n]) << endl; return 0; }