import sys from collections import defaultdict def main(): input = sys.stdin.read().split() n = int(input[0]) a = list(map(int, input[1:n+1])) freq = defaultdict(int) pos = defaultdict(list) for idx, num in enumerate(a): freq[num] += 1 pos[num].append(idx + 1) # 1-based total = 0 for x in pos: cnt = freq[x] if cnt == 1: total += 1 continue # Compute prefix sums for transformed array prefix = [0] * (n + 1) for i in range(1, n + 1): if a[i-1] == x: prefix[i] = prefix[i-1] + 1 else: prefix[i] = prefix[i-1] - 1 # Collect all possible values for compression all_values = [] for s in prefix: all_values.append(s) all_values.append(s - 1) # Compress the values sorted_values = sorted(list(set(all_values))) value_to_rank = {v: i+1 for i, v in enumerate(sorted_values)} # 1-based # Fenwick Tree implementation class FenwickTree: def __init__(self, size): self.size = size self.tree = [0] * (self.size + 1) def update(self, idx, delta=1): while idx <= self.size: self.tree[idx] += delta idx += idx & -idx def query(self, idx): res = 0 while idx > 0: res += self.tree[idx] idx -= idx & -idx return res ft_size = len(sorted_values) fenwick = FenwickTree(ft_size) current_total = 0 # Insert S[0] s0 = prefix[0] fenwick.update(value_to_rank[s0]) for j in range(1, n + 1): s_j = prefix[j] target = s_j - 1 # Find the largest value in sorted_values <= target left, right = 0, len(sorted_values) - 1 best = -1 while left <= right: mid = (left + right) // 2 if sorted_values[mid] <= target: best = mid left = mid + 1 else: right = mid - 1 if best == -1: cnt = 0 else: rank = best + 1 # since sorted_values is 0-based, ranks are 1-based cnt = fenwick.query(rank) current_total += cnt # Add S[j] to Fenwick Tree (which is prefix[j] for the next iteration) s_prev = prefix[j] fenwick.update(value_to_rank[s_prev]) total += current_total print(total) if __name__ == "__main__": main()