def main(): import sys input = sys.stdin.read().split() idx = 0 N = int(input[idx]) idx += 1 p = float(input[idx]) idx += 1 q = float(input[idx]) # Initialize right and left arrays with 1-based indexing right = [0.0] * (N + 2) # right[i]: probability of being at gate i facing right left = [0.0] * (N + 2) # left[i]: probability of being at gate i facing left right[1] = 1.0 # start at gate 1 facing right r = 0.0 # Accumulated probability of returning to origin eps = 1e-15 # Convergence threshold max_iterations = 1000000 # Prevent infinite loop for _ in range(max_iterations): right_new = [0.0] * (N + 2) left_new = [0.0] * (N + 2) add_r = 0.0 for i in range(1, N + 1): # Process right-facing at gate i current_r = right[i] if current_r > eps: # Probability p: reverse direction (left) new_i = i - 1 if new_i == 0: add_r += p * current_r elif new_i >= 1: left_new[new_i] += p * current_r # Probability q: continue right new_i = i + 1 if new_i == 0: add_r += q * current_r elif new_i <= N: right_new[new_i] += q * current_r # Process left-facing at gate i current_l = left[i] if current_l > eps: # Probability p: reverse direction (right) new_i = i + 1 if new_i == 0: add_r += p * current_l elif new_i <= N: right_new[new_i] += p * current_l # Probability q: continue left new_i = i - 1 if new_i == 0: add_r += q * current_l elif new_i >= 1: left_new[new_i] += q * current_l r += add_r # Check for convergence sum_new = sum(right_new) + sum(left_new) if sum_new < eps: break # Update right and left arrays for next iteration right, right_new = right_new, right left, left_new = left_new, left print("{0:.15f}".format(r).rstrip('0').rstrip('.') if '.' in "{0:.15f}".format(r) else r) if __name__ == "__main__": main()