MOD = 998244353 def main(): import sys H, W, K = map(int, sys.stdin.readline().split()) T = H + W - 2 a = H - 1 M = K // 2 # Precompute factorial and inverse factorial modulo MOD max_n = T fact = [1] * (max_n + 1) for i in range(1, max_n + 1): fact[i] = fact[i-1] * i % MOD inv_fact = [1] * (max_n + 1) inv_fact[max_n] = pow(fact[max_n], MOD-2, MOD) for i in range(max_n-1, -1, -1): inv_fact[i] = inv_fact[i+1] * (i+1) % MOD def comb(n, k): if k < 0 or k > n: return 0 return fact[n] * inv_fact[k] % MOD * inv_fact[n - k] % MOD if K == 0: # Special case: paths must be identical c = comb(T, a) print(c % MOD) return m_plus_1 = M + 1 # Compute k_min and k_max numerator_k_min1 = a - T numerator_k_min2 = -a k_min1 = numerator_k_min1 // m_plus_1 if numerator_k_min1 % m_plus_1 != 0 and numerator_k_min1 < 0: k_min1 -= 1 k_min2 = numerator_k_min2 // m_plus_1 if numerator_k_min2 % m_plus_1 != 0 and numerator_k_min2 < 0: k_min2 -= 1 k_min = max(k_min1, k_min2) numerator_k_max1 = T - a k_max1 = numerator_k_max1 // m_plus_1 k_max2 = a // m_plus_1 k_max = min(k_max1, k_max2) sum_ans = 0 for k in range(k_min, k_max + 1): c1 = a + k * m_plus_1 c2 = a - k * m_plus_1 if c1 < 0 or c1 > T or c2 < 0 or c2 > T: continue term = pow(-1, k, MOD) * comb(T, c1) * comb(T, c2) sum_ans = (sum_ans + term) % MOD print(sum_ans % MOD) if __name__ == "__main__": main()